Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(8): 1079-1084, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33958771

RESUMO

A plethora of single-photon emitters have been identified in the atomic layers of two-dimensional van der Waals materials1-8. Here, we report on a set of isolated optical emitters embedded in hexagonal boron nitride that exhibit optically detected magnetic resonance. The defect spins show an isotropic ge-factor of ~2 and zero-field splitting below 10 MHz. The photokinetics of one type of defect is compatible with ground-state electron-spin paramagnetism. The narrow and inhomogeneously broadened magnetic resonance spectrum differs significantly from the known spectra of in-plane defects. We determined a hyperfine coupling of ~10 MHz. Its angular dependence indicates an unpaired, out-of-plane delocalized π-orbital electron, probably originating from substitutional impurity atoms. We extracted spin-lattice relaxation times T1 of 13-17 µs with estimated spin coherence times T2 of less than 1 µs. Our results provide further insight into the structure, composition and dynamics of single optically active spin defects in hexagonal boron nitride.

2.
Phys Rev Lett ; 121(8): 080402, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192579

RESUMO

A new laboratory bound on the axial-vector mediated interaction between electron spins at micrometer scale is established with single nitrogen-vacancy (NV) centers in diamond. A single crystal of p-terphenyl doped pentacene-d_{14} under laser pumping provides the source of polarized electron spins. Based on the measurement of polarization signal via nitrogen-vacancy centers, we set a constraint for the exotic electron-electron coupling g_{A}^{e}g_{A}^{e}, within the force range from 10 to 900 µm. The obtained upper bound of the coupling at 500 µm is |g_{A}^{e}g_{A}^{e}/4πℏc|≤1.8×10^{-19}, which is one order of magnitude more stringent than a previous experiment. Our result shows that the NV center can be a promising platform for searching for new particles predicted by theories beyond the standard model.

3.
Phys Rev Lett ; 120(12): 120501, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694055

RESUMO

Adiabatic cyclic modulation of a one-dimensional periodic potential will result in quantized charge transport, which is termed the Thouless pump. In contrast to the original Thouless pump restricted by the topology of the energy band, here we experimentally observe a generalized Thouless pump that can be extensively and continuously controlled. The extraordinary features of the new pump originate from interband coherence in nonequilibrium initial states, and this fact indicates that a quantum superposition of different eigenstates individually undergoing quantum adiabatic following can also be an important ingredient unavailable in classical physics. The quantum simulation of this generalized Thouless pump in a two-band insulator is achieved by applying delicate control fields to a single spin in diamond. The experimental results demonstrate all principal characteristics of the generalized Thouless pump. Because the pumping in our system is most pronounced around a band-touching point, this work also suggests an alternative means to detect quantum or topological phase transitions.

4.
Phys Rev Lett ; 118(13): 130504, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409975

RESUMO

The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

5.
Phys Rev Lett ; 117(17): 170501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824462

RESUMO

Quantum control of systems plays an important role in modern science and technology. The ultimate goal of quantum control is to achieve high-fidelity universal control in a time-optimal way. Although high-fidelity universal control has been reported in various quantum systems, experimental implementation of time-optimal universal control remains elusive. Here, we report the experimental realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent method for solving quantum brachistochrone equations [X. Wang et al., Phys. Rev. Lett. 114, 170501 (2015)], we obtained accurate minimum-time protocols for multiple qubits with fixed qubit interactions and a constrained control field. Single- and two-qubit time-optimal gates are experimentally implemented with fidelities of 99% obtained via quantum process tomography. Our work provides a time-optimal route to achieve accurate quantum control and unlocks new capabilities for the emerging field of time-optimal control in general quantum systems.

6.
Phys Rev Lett ; 112(5): 050503, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580578

RESUMO

Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems.

7.
Science ; 364(6443): 878-880, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31147518

RESUMO

Steering the evolution of single spin systems is crucial for quantum computing and quantum sensing. The dynamics of quantum systems has been theoretically investigated with parity-time-symmetric Hamiltonians exhibiting exotic properties. Although parity-time symmetry has been explored in classical systems, its observation in a single quantum system remains elusive. We developed a method to dilate a general parity-time-symmetric Hamiltonian into a Hermitian one. The quantum state evolutions ranging from regions of unbroken to broken [Formula: see text] symmetry have been observed with a single nitrogen-vacancy center in diamond. Owing to the universality of the dilation method, our result provides a route for further exploiting and understanding the exotic properties of parity-time symmetric Hamiltonian in quantum systems.

8.
Nat Commun ; 9(1): 739, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467417

RESUMO

Searching for new particles beyond the standard model is crucial for understanding several fundamental conundrums in physics and astrophysics. Several hypothetical particles can mediate exotic spin-dependent interactions between ordinary fermions, which enable laboratory searches via the detection of the interactions. Most laboratory searches utilize a macroscopic source and detector, thus allowing the detection of interactions with submillimeter force range and above. It remains a challenge to detect the interactions at shorter force ranges. Here we propose and demonstrate that a near-surface nitrogen-vacancy center in diamond can be utilized as a quantum sensor to detect the monopole-dipole interaction between an electron spin and nucleons. Our result sets a constraint for the electron-nucleon coupling, [Formula: see text], with the force range 0.1-23 µm. The obtained upper bound of the coupling at 20 µm is [Formula: see text] < 6.24 × 10-15.

9.
Nat Commun ; 6: 8748, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26602456

RESUMO

Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant (13)C diamond via composite pulses and an optimized control method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa