Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 584(7820): 304-309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581365

RESUMO

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/química , Receptores de GABA-B/ultraestrutura , Cálcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/metabolismo , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 119(15): e2120913119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35324337

RESUMO

SignificanceThe coronavirus main protease (Mpro) is required for viral replication. Here, we obtained the extended conformation of the native monomer of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro by trapping it with nanobodies and found that the catalytic domain and the helix domain dissociate, revealing allosteric targets. Another monomeric state is termed compact conformation and is similar to one protomer of the dimeric form. We designed a Nanoluc Binary Techonology (NanoBiT)-based high-throughput allosteric inhibitor assay based on structural conformational change. Our results provide insight into the maturation, dimerization, and catalysis of the coronavirus Mpro and pave a way to develop an anticoronaviral drug through targeting the maturation process to inhibit the autocleavage of Mpro.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Regulação Alostérica/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , COVID-19/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos , Luciferases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Multimerização Proteica
4.
Biochem Biophys Res Commun ; 695: 149401, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154264

RESUMO

Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.


Assuntos
Hipercalcemia , Hipocalcemia , Anticorpos de Domínio Único , Humanos , Receptores de Detecção de Cálcio/metabolismo , Cálcio/metabolismo , Hipocalcemia/genética , Hipercalcemia/genética
5.
Opt Express ; 32(11): 18800-18811, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859029

RESUMO

In sixth generation (6G) communications, terahertz (THz) communication is one of the most important technologies in the future due to its ultra-bandwidth, where hybrid beamforming has been widely used to solve the severe transmission attenuation in the THz band. However, the use of frequency-flat phase shifters in hybrid beamforming leads to the beam split effect. To solve the beam split influence, we propose a novel optical true time delay compensation network (OTTDCN)-based phase precoding structure with low power consumption. In the proposed scheme, the OTTDCN pre-generates multiple beam compensation modes to achieve phase compensation for different frequencies. As a result, the compensated beams can be reoriented toward the target direction at different frequencies. Moreover, a low-complexity beam compensation mode-based hybrid precoding algorithm is proposed, where the selection of the optimal beam compensation modes used for all radio-frequency (RF) chains with finite beam compensation modes is considered. The results show that the OTTDCN-based phase precoding scheme can effectively alleviate the beam split effect with low power consumption and achieve near-optimal performance.

6.
Opt Lett ; 49(5): 1129-1132, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426955

RESUMO

Auxiliary laser heating has become a widely adopted method for Kerr soliton frequency comb generation in optical microcavities, thanks to its reliable and easy-to-achieve merits for solving the thermal instability during the formation of dissipative Kerr solitons. Here, we conduct optimization of auxiliary laser heating by leveraging the distinct loss and absorption characteristics of different longitudinal and polarization cavity modes. We show that even if the auxiliary and pump lasers enter orthogonal polarization modes, their mutual photothermal balance can be efficient enough to maintain a cavity thermal equilibrium as the pump laser enters the red-detuning soliton regime, and by choosing the most suitable resonance for the auxiliary and pump lasers, the auxiliary laser power can be reduced to 20% of the pump laser and still be capable of warranting soliton generation. Moreover, we demonstrate soliton comb generation using integrated laser modules with a few milliwatt on-chip pump and auxiliary powers, showcasing the potential for further chip integration of the auxiliary laser heating method.

7.
Cells Tissues Organs ; : 1-24, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824915

RESUMO

INTRODUCTION: Acupuncture has been used for pain management for thousands of years. However, it is largely unclear whether this therapeutic approach can effectively reduce heart failure-associated symptoms, including dyspnea. The hypothesis posited in this study was that acupuncture does indeed aid in the management of such symptoms and was motivated by the following statistics that establish a requisite need for efficient management of dyspnea to improve patient outcomes with heart failure. In 2020, an estimated 6.2 million adults in the USA had a heart failure diagnosis; in 2018, 379,800 death certificates reported heart failure; and the national cost of heart failure in 2012 was approximately USD 30.7 billion. METHODS: The methodology employed to conduct this study involved review of trial data extracted from review of papers pertaining to acupuncture, symptoms of heart failure, and dyspnea, from academic and clinical data repositories subject to various inclusion and exclusion criteria. Of the initial set of 293 studies identified, the resulting inclusion set comprised 30 studies. The analysis conducted revealed that the highest frequency of combined acupuncture points prescribed for the foregoing search criteria were as follows: BL13, BL23, LU9, LU5, Dingchuan, LI4, PC6, and HT7. RESULTS: A meta-analysis of combined pooled p values for the studies revealed that acupuncture does aid in the management of symptoms of dyspnea and heart failure, subject to various limitations including but not limited to heterogeneity inherent between the studies in the inclusion set that were analyzed. Such limitations underscore the need to restrict generalizations from the conclusions of this study. CONCLUSION: The impact and novelty of this research study is its attempt to target the apparent paucity of literature that focuses on the management of dyspnea specifically in the context of heart failure with acupuncture and to bridge the gap of the application of acupuncture research on dyspnea to the cardiovascular context of heart failure. Notwithstanding the meta-analysis undertaken under this review study, further statistical analysis and a pilot study are warranted to consolidate or nullify the results of the research.

8.
Nature ; 619(7969): 248-251, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37430110
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916296

RESUMO

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
10.
J Environ Manage ; 368: 122193, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39178793

RESUMO

As global warming and environmental degradation escalate, policymakers worldwide increasingly advocate for the development of green patents. However, there is ongoing debate regarding the effectiveness of green patents in actual pollution reduction. Some studies suggest that firms may engage in green patenting activities to align with government and market expectations rather than achieving substantive breakthroughs in pollution reduction. In light of this, it is crucial to examine the impact of green patents on pollution reduction. This study employs a PSM-DID model to analyze the impact of green patents on pollution emission intensity using plant-level data from Chinese industrial firms. The results demonstrate that with an average increase of 1% in the number of green patents, the industrial waste gas emission intensity and industrial wastewater discharge intensity decreased by 4.74% and 8.68%, respectively. Furthermore, pollution treatment facilities were found to be more effective than green patents during the sample period. On average, the contribution of waste gas treatment facilities and wastewater treatment facilities in pollution reduction is 3.33% and 9.79% higher than that of green patents. These findings suggest that firms should adopt a balanced approach when making decisions on pollution reduction. Further analysis shows that the pollution reduction effect of green patents is partly at the expense of the total factor productivity of firms. This trade-off highlights the need for policy interventions to support firms in integrating green technologies without compromising productivity. This study underscores the emphasizes of transitioning from end-of-pipe pollution control to green production processes to achieve sustainable development in China.


Assuntos
Indústrias , China , Poluição Ambiental/prevenção & controle , Resíduos Industriais , Patentes como Assunto , Águas Residuárias
11.
J Struct Biol ; 215(3): 107996, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419228

RESUMO

The evolving SARS-CoV-2 Omicron strain has repeatedly caused widespread disease epidemics, and effective antibody drugs continue to be in short supply. Here, we identified a batch of nanobodies with high affinity for receptor binding domain (RBD) of SARS-CoV-2 spike protein, separated them into three classes using high performance liquid chromatography (HPLC), and then resolved the crystal structure of the ternary complexes of two non-competing nanobodies (NB1C6 and NB1B5) with RBD using X-ray crystallography. The structures showed that NB1B5 and NB1C6 bind to the left and right flank of the RBD, respectively, and that the binding epitopes are highly conserved cryptic sites in all SARS-CoV-2 mutant strains, as well as that NB1B5 can effectively block the ACE2. These two nanobodies were covalently linked into multivalent and bi-paratopic formats, and have a high affinity and neutralization potency for omicron, potentially inhibiting viral escape. The binding sites of these two nanobodies are relatively conserved, which help guide the structural design of antibodies targeting future variants of SARS-CoV-2 to combat COVID-19 epidemics and pandemics.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Anticorpos , Epitopos/genética , Anticorpos Neutralizantes
12.
Nat Mater ; 21(12): 1441-1447, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36175519

RESUMO

Mechanically responsive textiles have transformative potential in many areas from fashion to healthcare. Cholesteric liquid crystal elastomers have strong mechanochromic responses that offer attractive opportunities for such applications. Nonetheless, making liquid crystalline elastomer fibres suitable for textiles is challenging since the Plateau-Rayleigh instability tends to break up precursor solutions into droplets. Here, we report a simple approach that balances the viscoelastic properties of the precursor solution to avoid this outcome and achieve long and mechanically robust cholesteric liquid crystal elastomer filaments. These filaments have fast, progressive and reversible mechanochromic responses, from red to blue (wavelength shift of 155 nm), when stretched up to 200%. Moreover, the fibres can be sewed into garments and withstand repeated stretching and regular machine washing. This approach and resulting fibres may be useful for applications in wearable technology and other areas benefiting from autonomous strain sensing or detection of critically strong deformations.


Assuntos
Cristais Líquidos , Dispositivos Eletrônicos Vestíveis , Elastômeros/química , Cristais Líquidos/química , Têxteis
13.
Opt Express ; 31(22): 37154-37161, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017850

RESUMO

Microresonator soliton frequency combs offer unique flexibility in synthesizing microwaves over a wide range of frequencies. Therefore, it is very important to study the time jitter of soliton microcombs. Here, we fabricate optical microresonators with perfect transmission spectrum that characterizes highly uniform extinction ratio and absence of mode interactions by laser machining high-purity silica fiber preforms. Based on such perfect whispering-gallery-mode cavity, We demonstrate that K-band microwave with ultra-low phase noise (-83 dBc/Hz@100 Hz; -112 dBc/Hz@1kHz; -133 dBc/Hz@10kHz) can be generated by photo-detecting the repetition rate of a soliton microcomb. Also, with the Raman scattering and dispersive wave emission largely restricted, we show that ultra-low time jitter soliton has a wide existence range. Our work illuminates a pathway toward low-noise photonic microwave generation as well as the quantum regime of soliton microcombs.

14.
Opt Lett ; 48(15): 3965-3968, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527094

RESUMO

All-optical phase regeneration aims at restoring the phase information of coherently encoded data signals directly in the optical domain so as to compensate for phase distortions caused by transceiver imperfections and nonlinear impairments along the transmission link. Although it was proposed two decades ago, all-optical phase regeneration has not been seen in realistic networks to date, mainly because this technique entails complex bulk modules and relies on high-precision phase sensitive nonlinear dynamics, both of which are adverse to field deployment. Here, we demonstrate a new, to the best of our knowledge, architecture to implement all-optical phase regeneration using integrated photonic devices. In particular, we realize quadrature phase quantization by exploring the phase-sensitive parametric wave mixing within on-chip silicon waveguides, while multiple coherent pump laser tones are provided by a chip-scale micro-cavity Kerr frequency comb. Multi-channel all-optical phase regeneration is experimentally demonstrated for 40 Gbps QPSK data, achieving the best SNR improvement of more than 6 dB. Our study showcases a promising avenue to enable the practical implementation of all-optical phase regeneration in realistic long-distance fiber transmission networks.

15.
Protein Expr Purif ; 207: 106267, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030644

RESUMO

Coronavirus Papain-like protease (PLpro) mediates the cleavage of viral polyproteins and assists the virus escaping from innate immune response. Thus, PLpro is an attractive target for the development of broad-spectrum drugs as it has a conserved structure across different coronaviruses. In this study, we purified SARS-CoV-2 PLpro as an immune antigen, constructed a nanobody phage display library, and identified a set of nanobodies with high affinity for SARS-CoV-2. In addition, enzyme activity experiments demonstrated that two nanobodies had a significant inhibitory effect on the PLpro. These nanobodies should therefore be investigated as candidates for the treatment of coronaviruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Peptídeo Hidrolases , Papaína/química
16.
Protein Expr Purif ; 207: 106268, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023993

RESUMO

As one of the receptors of the TAM family, AXL plays a vital role in stem cell maintenance, angiogenesis, immune escape of viruses and drug resistance against tumors. In this study, the truncated extracellular segment containing two immunoglobulin-like domains of human AXL (AXL-IG), which has been confirmed to bind growth arrest specific 6 (GAS6) by structural studies [1], was expressed in a prokaryotic expression system and then purified. Immunizing camelid with the purified AXL-IG as antigen could lead to the production of unique nanobodies composed of only variable domain of heavy chain of heavy-chain antibody (VHH), which are around 15 kD and stable. We screened out a nanobody A-LY01 specific binding to AXL-IG. We further determined the affinity of A-LY01 to AXL-IG and revealed that A-LY01 could specifically recognize full-length AXL on the surface of HEK 293T/17 cells. Our study provides appropriate support for the development of diagnostic reagents and antibody therapeutics targeting AXL.


Assuntos
Escherichia coli , Neoplasias , Humanos , Escherichia coli/genética , Anticorpos , Cadeias Pesadas de Imunoglobulinas
18.
Acta Pharmacol Sin ; 44(5): 1095-1104, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36418428

RESUMO

CKLF (chemokine-like factor)-MARVEL transmembrane domain containing protein 6 (CMTM6) is a novel regulator to maintain the stability of PD-L1. CMTM6 can colocalize and interact with PD-L1 on the recycling endosomes and cell membrane, preventing PD-L1 from lysosome-mediated degradation and proteasome-mediated degradation thus increasing the half-life of PD-L1 on the cell membrane. The difficulties in obtaining stable full-length PD-L1 and CMTM6 proteins hinder the research on their structures, function as well as related drug development. Using lauryl maltose neopentyl glycol (LMNG) as the optimized detergent and a cell membrane mimetic strategy, we assembled a stable membrane-bound full-length CMTM6-PD-L1 complex with amphipol A8-35. When the PD-1/PD-L1-CMTM6 interactions were analyzed, we found that CMTM6 greatly enhanced the binding and delayed the dissociation of PD-1/PD-L1, thus affecting immunosuppressive signaling and anti-apoptotic signaling. We then used the CMTM6-PD-L1 complex as immunogens to generate immune repertoires in camels, and identified a functional anti-CMTM6 nanobody, called 1A5. We demonstrated that the anti-CMTM6 nanobody greatly decreased T-cell immunosuppression and promoted apoptotic susceptibility of tumor cells in vitro, and mainly relied on the cytotoxic effect of CD8+ T-cells to exert tumor growth inhibitory effects in CT26 tumor-bearing mice. In conclusion, the stable membrane-bound full-length CMTM6-PD-L1 complex has been successfully used in studying PD-1/PD-L1-CMTM6 interactions and CMTM6-targeting drug development, suggesting CMTM6 as a novel tumor immunotherapy target.


Assuntos
Antígeno B7-H1 , Proteínas com Domínio MARVEL , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas com Domínio MARVEL/imunologia , Proteínas com Domínio MARVEL/metabolismo , Engenharia de Proteínas/métodos , Anticorpos de Domínio Único/biossíntese
19.
Sens Actuators B Chem ; 383: 133575, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36873859

RESUMO

Sensitive, rapid, and easy-to-implement biosensors are critical in responding to highly contagious and fast-spreading severe acute respiratory syndrome coronavirus (SARS-CoV-2) mutations, enabling early infection screening for appropriate isolation and treatment measures to prevent the spread of the virus. Based on the sensing principle of localized surface plasmon resonance (LSPR) and nanobody immunological techniques, an enhanced sensitivity nanoplasmonic biosensor was developed to quantify the SARS-CoV-2 spike receptor-binding domain (RBD) in serum within 30 min. The lowest concentration in the linear range can be detected down to 0.01 ng/mL by direct immobilization of two engineered nanobodies. Both the sensor fabrication process and immune strategy are facile and inexpensive, with the potential for large-scale application. The designed nanoplasmonic biosensor achieved excellent specificity and sensitivity for SARS-CoV-2 spike RBD, providing a potential option for accurate early screening of the novel coronavirus disease 2019 (COVID-19).

20.
Ecotoxicol Environ Saf ; 259: 115007, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209571

RESUMO

Wastewater treatment plants (WWTPs) are significant contributors to energy consumption and anthropogenic greenhouse gas (GHG) emissions. For achieving carbon reduction in the wastewater treatment industry, the direct and indirect GHG emissions generated by WWTPs need to be understood from a holistic perspective. This study estimated GHG emissions from WWTPs at the country scale by integrating process-based life cycle assessment and statistical data. On-site data were collected from 17 WWTPs of various regions in China. Uncertainty analysis based on Monte Carlo was also performed, so as to provide more reliable results. The results show that life cycle GHG emissions generated from the wastewater treatment process vary from 0.29 kg CO2 eq/m3 to 1.18 kg CO2 eq/m3 based on 17 sample WWTPs. The key factors contributing to overall GHG emissions are also identified as carbon dioxide (fossil) and methane (fossil) to air mainly generated from electricity generation, and methane (biogenic) and nitrous oxide (biogenic) to air mainly generated from wastewater treatment. National average GHG emissions was evaluated with the value of 0.88 kg CO2 eq/m3, with on-site GHG emissions and off-site electricity-based GHG emissions accounting for 32% and 34%, respectively. The total GHG emissions generated from wastewater treatment are 56.46 billion kg CO2 eq in 2020, with Guangdong province having the dominant contribution. Policy suggestions (e.g., further adjusting the electricity grid toward a low carbon structure, improving technology to promote treatment efficiency and energy recovery) were highly recommended so that national GHG emissions of WWTPs can be reduced. In order to achieve the synergy of pollutant removal and GHG emission reduction, policy-making on wastewater treatment should be tailored to specific local conditions.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Animais , Gases de Efeito Estufa/análise , Eliminação de Resíduos Líquidos/métodos , Dióxido de Carbono/análise , Efeito Estufa , Metano/análise , China , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa