Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1801-1807, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277670

RESUMO

The electrooxidation of propylene presents a promising route for the production of 1,2-propylene glycol (PG) under ambient conditions. However, the C-O coupling process remains a challenge owing to the high energy barrier. In this work, we developed a highly efficient electrocatalyst of bipyridine-confined Ag single atoms on UiO-bpy substrates (Ag SAs/UiO-bpy), which exposed two in-plane coordination vacancies during reaction for the co-adsorption of key intermediates. Detailed structure and electronic property analyses demonstrate that CH3CHCH2OH* and *OH could stably co-adsorb in a square planar configuration, which then accelerates the charge transfer between them. The combination of stable co-adsorption and efficient charge transfer facilitates the C-O coupling process, thus significantly lowering its energy barrier. At 2.4 V versus a reversible hydrogen electrode, Ag SAs/UiO-bpy achieved a record-high activity of 61.9 gPG m-2 h-1. Our work not only presents a robust electrocatalyst but also advances a new perspective on catalyst design for propylene electrooxidation.

2.
J Am Chem Soc ; 146(10): 6536-6543, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412553

RESUMO

The past decade has witnessed substantial progress in understanding nontrivial band topology and discovering exotic topological materials in condensed-matter physics. Recently, topological physics has been further extended to the chemistry discipline, leading to the emergence of topological catalysis. In principle, the topological effect is detectable in catalytic reactions, but no conclusive evidence has been reported yet. Herein, by precisely manipulating the topological surface state (TSS) of Bi2Se3 nanosheets through thickness control and the application of a magnetic field, we provide direct experimental evidence to illustrate topological catalysis for CO2 electroreduction. With and without the cooperation of TSS, CO2 is mainly reduced into liquid fuels (HCOOH and H2C2O4) and CO, exhibiting high (up to 90% at -1.1 V versus reversible hydrogen electrode) and low Faradaic efficiency (FE), respectively. Theoretically, the product and FE difference can be attributed to the TSS-regulated adsorption of key intermediates and the reduced barrier of the potential-determining step. Our work demonstrates the inherent correlation between band topology and electrocatalysis, paving a new avenue for designing high-performance catalysts.

3.
J Am Chem Soc ; 145(27): 14903-14911, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37312284

RESUMO

The interfacial structure of heterogeneous catalysts determines the reaction rate by adjusting the adsorption behavior of reaction intermediates. Unfortunately, the catalytic performance of conventionally static active sites has always been limited by the adsorbate linear scaling relationship. Herein, we develop a triazole-modified Ag crystal (Ag crystal-triazole) with dynamic and reversible interfacial structures to break such a relationship for boosting the catalytic activity of CO2 electroreduction into CO. On the basis of surface science measurements and theoretical calculations, we demonstrated the dynamic transformation between adsorbed triazole and adsorbed triazolyl on the Ag(111) facet induced by metal-ligand conjugation. During CO2 electroreduction, Ag crystal-triazole with the dynamically reversible transformation of ligands exhibited a faradic efficiency for CO of 98% with a partial current density for CO as high as -802.5 mA cm-2. The dynamic metal-ligand coordination not only reduced the activation barriers of CO2 protonation but also switched the rate-determining step from CO2 protonation to the breakage of C-OH in the adsorbed COOH intermediate. This work provided an atomic-level insight into the interfacial engineering of the heterogeneous catalysts toward highly efficient CO2 electroreduction.

4.
J Am Chem Soc ; 145(16): 9104-9111, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36944146

RESUMO

For the electrooxidation of propylene into 1,2-propylene glycol (PG), the process involves two key steps of the generation of *OH and the transfer of *OH to the C═C bond in propylene. The strong *OH binding energy (EB(*OH)) favors the dissociation of H2O into *OH, whereas the transfer of *OH to propylene will be impeded. The scaling relationship of the EB(*OH) plays a key role in affecting the catalytic performance toward propylene electrooxidation. Herein, we adopt an immobilized Ag pyrazole molecular catalyst (denoted as AgPz) as the electrocatalyst. The pyrrolic N-H in AgPz could undergo deprotonation to form pyrrolic N (denoted as AgPz-Hvac), which can be protonated reversibly. During propylene electrooxidation, the strong EB(*OH) on AgPz favors the dissociation of H2O into *OH. Subsequently, the AgPz transforms into AgPz-Hvac that possesses weak EB(*OH), benefiting to the further combination of *OH and propylene. The dynamically reversible interconversion between AgPz and AgPz-Hvac accompanied by changeable EB(*OH) breaks the scaling relationship, thus greatly lowering the reaction barrier. At 2.0 V versus Ag/AgCl electrode, AgPz achieves a remarkable yield rate of 288.9 mmolPG gcat-1 h-1, which is more than one order of magnitude higher than the highest value ever reported.

5.
Nano Lett ; 22(19): 8000-8007, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36083633

RESUMO

Mass transfer plays an important role in controlling the surface coverage of reactants and the kinetics of surface reactions, thus significantly adjusting the catalytic performance. Herein, we reported that H2O diffusion was modulated by controlling the thicknesses of the carbon black (CB) layer between the gas diffusion electrode (GDE) of Cu and the electrolyte. As a consequence, the product distribution over the GDE of Cu was effectively regulated during CO2 electroreduction. Interestingly, a volcano-type relationship between the thickness of the CB layer and the faradaic efficiency (FE) for multicarbon (C2+) products was observed over the GDE of Cu. Especially, when the applied total current density was set as 800 mA cm-2, the FE for the C2+ products over the GDE of Cu coated by a CB layer with a thickness of 6.6 µm reached 63.2%, which was 2.8 times higher than that (16.8%) over the GDE of Cu without a CB layer.

6.
Nano Lett ; 22(9): 3801-3808, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467883

RESUMO

Cu-based tandem nanocrystals have been widely applied to produce multicarbon (C2+) products via enhancing CO intermediate (*CO) coverage toward CO2 electroreduction. Nevertheless, it remains ambiguous to understand the intrinsic correlation between *CO coverage and C-C coupling. Herein, we constructed a tandem catalyst via coupling CoPc with the gas diffusion electrode of Cu (GDE of Cu-CoPc). A faradaic efficiency for C2+ products of 82% was achieved over a GDE of Cu-CoPc at an applied current density of 480 mA cm-2 toward CO2 electroreduction, which was 1.8 times as high as that over the GDE of Cu. Based on in situ experiments and density functional theory calculations, we revealed that the high *CO coverage induced by CO-generating CoPc promoted the local enrichment of *CO with the top adsorption mode, thus reducing the energy barrier for the formation of OCCO intermediate. This work provides an in-depth understanding of the surface coverage-dependent mode-specific C-C coupling mechanism toward CO2 electroreduction.

7.
Nano Lett ; 22(6): 2554-2560, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157470

RESUMO

Tuning the local confinement of reaction intermediates is of pivotal significance to promote C-C coupling for enhancing the selectivity for multicarbon (C2+) products toward CO2 electroreduction. Herein, we have gained insights into the confinement effect of local CO concentration for enhanced C-C coupling over core-shell Ag@Cu catalysts by tuning the pore diameters within porous Cu shells. During CO2 electroreduction, the core-shell Ag@Cu catalysts with an average pore diameter of 4.9 nm within the Cu shells (Ag@Cu-p4.9) exhibited the highest Faradaic efficiency of 73.7% for C2+ products at 300 mA cm-2 among the three Ag@Cu catalysts. Finite-element-method simulations revealed that the pores with a diameter of 4.9 nm in Cu conspicuously enhanced the local CO concentration. On the basis of in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements, Ag@Cu-p4.9 exhibited the highest surface coverage of adsorbed CO intermediates with a linear adsorption configuration due to the confinement effect, thus facilitating C-C coupling.

8.
J Am Chem Soc ; 144(21): 9271-9279, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35549330

RESUMO

The two-dimensional surface or one-dimensional interface of heterogeneous catalysts is essential to determine the adsorption strengths and configurations of the reaction intermediates for desired activities. Recently, the development of single-atom catalysts has enabled an atomic-level understanding of catalytic processes. However, it remains obscure whether the conventional concept and mechanism of one-dimensional interface are applicable to zero-dimensional single atoms. In this work, we arranged the locations of single atoms to explore their interfacial interactions for improved oxygen evolution. When iridium single atoms were confined into the lattice of CoOOH, efficient electron transfer between Ir and Co tuned the adsorption strength of oxygenated intermediates. In contrast, atomic iridium species anchored on the surface of CoOOH induced inappreciable modification in electronic structures, whereas steric interactions with key intermediates at its Ir-OH-Co interface played a primary role in reducing its energy barrier toward oxygen evolution.

9.
Chem Soc Rev ; 50(17): 9817-9844, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34308950

RESUMO

In electrocatalysis, doping regulation has been considered as an effective method to modulate the active sites of catalysts, providing a powerful means for creating a large variety of highly efficient catalysts for various reactions. Of particular interest, there has been growing research concerning the doping of two-dimensional transition-metal compounds (TMCs) to optimize their electrocatalytic performance. Despite the previous achievements, mechanistic insights of doping regulation in TMCs for electrocatalysis are still lacking. Herein, we provide a systematic overview of doping regulation in TMCs in terms of background, preparation, impacts on physicochemical properties, and typical applications including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, and N2 reduction reaction. Notably, we bridge the understanding between the doping regulation of catalysts and their catalytic activities via focusing on the physicochemical properties of catalysts from the aspects of vacancy concentrations, phase transformation, surface wettability, electrical conductivity, electronic band structure, local charge distribution, tunable adsorption strength, and multiple adsorption configurations. We also discuss the existing challenges and future perspectives in this promising field.

10.
Nano Lett ; 21(18): 7789-7795, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460262

RESUMO

Surface functionalization with atoms serves as an important strategy to modulate the catalytic activities of low-dimensional nanomaterials. Herein, we developed a facile hydrogen incorporation strategy for improving the catalytic activities of SnS2 nanosheets toward CO2 electroreduction. Compared with SnS2 nanosheets, the hydrogen-incorporated SnS2 (denoted as H-SnS2) nanosheets exhibited high current density and Faradaic efficiency (FE) for formate. At -0.9 V vs RHE, H-SnS2 nanosheets displayed a maximum FE of 93% for carbonaceous product, which rivals the activities of most Sn-based catalysts in CO2 electroreduction. Mechanistic studies disclosed that the incorporation of surface hydrogen induced the electron injection into the structures of H-SnS2 nanosheets, which largely facilitates the process of CO2 activation. Density functional theory (DFT) calculations further revealed that hydrogen incorporation decreased the energy barrier for the formation of HCOO* intermediates, thus contributing to the CO2-to-formate conversion on H-SnS2 nanosheets.

11.
Nano Lett ; 21(20): 8924-8932, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34410722

RESUMO

CO2 electroreduction powered by renewable electricity represents a promising method to enclose anthropogenic carbon cycle. Current catalysts display high selectivity toward the desired product only over a narrow potential window due primarily to unoptimized intermediate binding. Here, we report a functional ligand modification strategy in which palladium nanoparticles are encapsulated inside metal-organic frameworks with 2,2'-bipyridine organic linkers to tune intermediate binding and thus to sustain a highly selective CO2-to-CO conversion over widened potential window. The catalyst exhibits CO faradaic efficiency in excess of 80% over a potential window from -0.3 to -1.2 V and reaches the maxima of 98.2% at -0.8 V. Mechanistic studies show that the 2,2'-bipyridine on Pd surface reduces the binding strength of both *H and *CO, a too strong binding of which leads to competing formate production and CO poison, respectively, and thus enhances the selectivity and stability of CO product.


Assuntos
Dióxido de Carbono , Nanopartículas Metálicas , Catálise , Eletricidade , Paládio
12.
Nano Lett ; 20(11): 8229-8235, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054238

RESUMO

Probing and understanding the intrinsic active sites of electrocatalysts is crucial to unravel the underlying mechanism of CO2 electroreduction and provide a prospective for the rational design of high-performance electrocatalysts. However, their structure-activity relationships are not straightforward because electrocatalysts might reconstruct under realistic working conditions. Herein, we employ in-situ measurements to unveil the intrinsic origin of the InN nanosheets which served as an efficient electrocatalyst for CO2 reduction with a high faradaic efficiency of 95% for carbonaceous product. During the CO2 electroreduction, InN nanosheets reconstructed to form the In-rich surface. Density functional theory calculations revealed that the reconstruction of InN led to the redistribution of surface charge that significantly promoted the adsorption of HCOO* intermediates and thus benefited the formation of formate toward CO2 electroreduction. This work establishes a fundamental understanding on the mechanism associated with self-reconstruction of heterogeneous catalysts toward CO2 electroreduction.

13.
Nano Lett ; 20(2): 1403-1409, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967840

RESUMO

Exploring the high-performance non-Pt electrocatalysts for oxygen reduction reaction (ORR), the bottleneck process in fuel cells, is desirable but challenging. Here, we report the Pd@PdFe core-shell icosahedra as an active and durable electrocatalyst toward ORR in alkaline conditions, which feature a three-atomic-layer tensile-strained PdFe overlayer on Pd icosahedra. Our optimized catalyst shows 2.8-fold enhancement in mass activity and 6.9-fold enhancement in specific activity than commercial Pt/C catalyst toward ORR, representing one of the best non-Pt electrocatalysts. Moreover, the boosted ORR catalysis is strongly supported by the assembled fuel cell performance using Pd@PdFe core-shell icosahedra as the cathode electrocatalyst. The density functional theory calculations reveal that the synergistic coupling of tensile strain and alloy effects enables the optimum binding strength for intermediates, thus causing the maximum activity. The present work suggests the coupling between multiple surface modulations endows larger room for the rational design of remarkable catalysts.

14.
Chemphyschem ; 21(18): 2051-2055, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721090

RESUMO

Electroreduction of CO2 into carbonaceous fuels or industrial chemicals using renewable energy sources is an ideal way to promote global carbon recycling. Thus, it is of great importance to develop highly selective, efficient, and stable catalysts. Herein, we prepared cobalt single atoms (Co SAs) coordinated with phthalocyanine (Co SAs-Pc). The anchoring of phthalocyanine with Co sites enabled electron transfer from Co sites to CO2 effectively via the π-conjugated system, resulting in high catalytic performance of CO2 electroreduction into CO. During the process of CO2 electroreduction, the Faradaic efficiency (FE) of Co SAs-Pc for CO was as high as 94.8 %. Meanwhile, the partial current density of Co SAs-Pc for CO was -11.3 mA cm-2 at -0.8 V versus the reversible hydrogen electrode (vs RHE), 18.83 and 2.86 times greater than those of Co SAs (-0.60 mA cm-2 ) and commercial Co phthalocyanine (-3.95 mA cm-2 ), respectively. In an H-cell system operating at -0.8 V vs RHE over 10 h, the current density and FE for CO of Co SAs-Pc dropped by 3.2 % and 2.5 %. A mechanistic study revealed that the promoted catalytic performance of Co SAs-Pc could be attributed to the accelerated reaction kinetics and facilitated CO2 activation.

15.
Angew Chem Int Ed Engl ; 59(46): 20411-20416, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743842

RESUMO

Efforts have been devoted to achieving a highly efficient artificial synthesis of ammonia (NH3 ). Reported herein is a novel Fe-MoS2 catalyst with Fe atomically dispersed onto MoS2 nanosheets, imitating natural nitrogenase, to boost N2 electroreduction into NH3 at room temperature. The Fe-MoS2 nanosheets exhibited a faradic efficiency of 18.8 % with a yield rate of 8.63 µg NH 3 mgcat. -1 h-1 for NH3 at -0.3 V versus the reversible hydrogen electrode. The mechanism study revealed that the electroreduction of N2 was promoted and the competing hydrogen evolution reaction was suppressed by decorating the edge sites of S in MoS2 with the atomically dispersed Fe, resulting in high catalytic performance for the electroreduction of N2 into NH3 . This work provides new ideas for the design of catalysts for N2 electroreduction and strengthens the understanding about N2 activation over Mo-based catalysts.

16.
Nano Lett ; 18(6): 3785-3791, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29782802

RESUMO

Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt1/Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt1/Ni nanocrystals reached ∼1800 h-1 under 3 atm of H2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO2, SiO2, and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt1/Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt1/Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt1/Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

17.
Angew Chem Int Ed Engl ; 57(21): 6054-6059, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29645366

RESUMO

As electron transfer to CO2 is generally considered to be the critical step during the activation of CO2 , it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO2 electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO2 activation by introducing oxygen vacancies into electrocatalysts with electronic-rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of -16.1 mA cm-2 with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO2 . Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO2 and the eased CO2 activation.

18.
Phys Chem Chem Phys ; 17(19): 13129-36, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25916946

RESUMO

A molecule or a molecular system always consists of excited states of different spin multiplicities. With conventional optical excitations, only the (bright) states with the same spin multiplicity of the ground state could be directly reached. How to reveal the dynamics of excited (dark) states remains the grand challenge in the topical fields of photochemistry, photophysics, and photobiology. For a singlet-triplet coupled molecular system, the (bright) singlet dynamics can be routinely examined by conventional femtosecond pump-probe spectroscopy. However, owing to the involvement of intrinsically fast decay channels such as intramolecular vibrational redistribution and internal conversion, it is very difficult, if not impossible, to single out the (dark) triplet dynamics. Herein, we develop a novel strategy that uses an ultrafast broadband white-light continuum as a excitation light source to enhance the probability of intersystem crossing, thus facilitating the population flow from the singlet space to the triplet space. With a set of femtosecond time-reversed pump-probe experiments, we report on a proof-of-concept molecular system (i.e., the malachite green molecule) that the pure triplet dynamics can be mapped out in real time through monitoring the modulated emission that occurs solely in the triplet space. Significant differences in excited-state dynamics between the singlet and triplet spaces have been observed. This newly developed approach may provide a useful tool for examining the elusive dark-state dynamics of molecular systems and also for exploring the mechanisms underlying molecular luminescence/photonics and solar light harvesting.


Assuntos
Escuridão , Teoria Quântica , Modelos Teóricos , Espectrometria de Fluorescência
19.
Nat Commun ; 15(1): 3646, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684683

RESUMO

The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.

20.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684692

RESUMO

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa