Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482084

RESUMO

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Assuntos
Células-Tronco Adultas/metabolismo , Cálcio/metabolismo , Ritmo Circadiano , Espaço Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Citosol/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Melatonina/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Optogenética , Transdução de Sinais/efeitos dos fármacos , Triptaminas/farmacologia
2.
STAR Protoc ; 2(2): 100596, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34169290

RESUMO

During adulthood, the activation of adult neural stem cells (NSCs) has been mostly studied ex vivo in post-mortem tissues or in vivo in anesthetized animals. This protocol presents an approach that allows for the long-term and minimally invasive investigation of adult NSC activation and physiology in freely behaving animals. By combining specific NSC labeling and mini-endoscopic microscopy, live imaging of NSC division and Ca2+ activity can be performed continuously for 2-3 days and even up to several months. For complete details on the use and execution of this protocol, please refer to Gengatharan et al. (2021).


Assuntos
Endoscópios , Células-Tronco Neurais/citologia , Animais , Cálcio/metabolismo , Camundongos
3.
Cell Rep ; 33(2): 108257, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053360

RESUMO

Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.


Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Proliferação de Células , Autorrenovação Celular , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Camundongos , Camundongos Knockout , Neurogênese
4.
Front Neurosci ; 10: 149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092050

RESUMO

In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future.

5.
Neurosci Lett ; 497(2): 134-8, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21545825

RESUMO

The transcription factor CCAAT enhancer binding protein (C/EBP) is a key regulator of inflammation and immune responses, and recent studies suggest it is involved in inflammatory processes in the nervous system. We generated a transgenic reporter mouse model, carrying the luciferase (luc) gene under the transcriptional control of C/EBP, for visualising C/EBP activity in vivo. Real-time bioluminescence imaging reflecting C/EBP activity was performed in an acute inflammation model, after systemic administration of lipopolysaccharides (LPS), in C/EBP-luc mice. A striking activity of C/EBP was imaged predominantly in the brain of living C/EBP-luc mice in response to LPS, showing for the first time in vivo that C/EBP mediates the brain response to inflammation. Furthermore, dexamethasone, a potent anti-inflammatory agent, diminished the LPS-induced C/EBP activity demonstrating the physiological regulation of bioluminescence intensity in the brain of C/EBP-luc mice. Our results implicate that C/EBP reporter mice have the potential to be a valuable tool for studies on the mechanisms of brain inflammation in vivo and for the noninvasive preclinical evaluation of therapeutic agents targeting neuroinflammatory diseases.


Assuntos
Encefalopatias/genética , Encefalopatias/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Modelos Animais de Doenças , Genes Reporter/genética , Mediadores da Inflamação/fisiologia , Proteínas Luminescentes/genética , Doença Aguda , Animais , Encefalopatias/terapia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Feminino , Mediadores da Inflamação/uso terapêutico , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa