Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(40): e202401219, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38629243

RESUMO

Patterning offers an efficient way to quantitatively enhance and enlarge material properties and functionalities, offering unprecedented opportunities for innovation in various scientific domains. By precisely controlling the spatial arrangement of materials at the micro- and nanoscale, patterning enables the exploitation of inherent material properties in novel ways. In addition, it generates new properties, leading to the development of advanced devices and applications. This article highlights the significant contributions of spatially controlled patterning in chemistry, particularly in generating new functional properties and devices, discussing some representative articles. Examples include the use of unconventional patterning techniques for surface functionalization, as well as the application of spatial confinement in improving material properties and controlling crystallization processes. Furthermore, the discussion extends to creating new devices, such as optical storage media and sensors, through spatial organization of materials.

2.
Langmuir ; 39(35): 12430-12451, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37608587

RESUMO

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.

3.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364061

RESUMO

We herein address the problem of polymorph selection by introducing a general and straightforward concept based on their ordering. We demonstrated the concept by the ordered patterning of four compounds capable of forming different polymorphs when deposited on technologically relevant surfaces. Our approach exploits the fact that, when the growth of a crystalline material is confined within sufficiently small cavities, only one of the possible polymorphs is generated. We verify our method by utilizing several model compounds to fabricate micrometric "logic patterns" in which each of the printed pixels is easily identifiable as comprising only one polymorph and can be individually accessed for further operations.

4.
Chem Soc Rev ; 48(9): 2502-2517, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30869083

RESUMO

Polymorphism is a widespread phenomenon occurring in many solid materials having important effects in many scientific disciplines. Since molecular packing can determine the functional properties of materials but is often difficult to control, polymorphism has usually been considered a drawback for technological applications. Thanks to advances in its control over the past few years, polymorphism is now often considered more as an opportunity because it allows a much wider range of functionality in, for example, a solid molecular material, where a corresponding packing type can be selected or even promoted. This tutorial review introduces the reader to the most representative progress in applications of polymorphism as an additional functionality of materials especially in its current promise for technological applications. In addition, it examines the most powerful strategies to control and fully exploit the intrinsic properties of polymorphism and transitions between its various metastable states, through fine-tuning of molecular packing in a reproducible manner. The aim is to create awareness about polymorphism as a novel enabling technology rather than as a problem.

5.
Small ; 14(34): e1801219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30058105

RESUMO

Medical applications of nanoparticles (NPs) require understanding of their interactions with living systems in order to control their physiological response, such as cellular uptake and cytotoxicity. When NPs are exposed to biological fluids, the adsorption of extracellular proteins on the surface of NPs, creating the so-called protein corona, can critically affect their interactions with cells. Here, the effect of surface coating of silver nanoparticles (AgNPs) on the adsorption of serum proteins (SPs) and its consequence on cellular uptake and cytotoxicity in mouse embryonic fibroblasts are shown. In particular, citrate-capped AgNPs are internalized by cells and show a time- and dose-dependent toxicity, while the passivation of the NP surface with an oligo(ethylene glycol) (OEG)-alkanethiol drastically reduces their uptake and cytotoxicity. The exposure to growth media containing SPs reveals that citrate-capped AgNPs are promptly coated and stabilized by proteins, while the AgNPs resulting from capping with the OEG-alkanethiol are more resistant to adsorption of proteins onto their surface. Using NIH-3T3 cultured in serum-free, the key role of the adsorption of SPs onto surface of NPs is shown as only AgNPs with a preformed protein corona can be internalized by the cells and, consequently, carry out their inherent cytotoxic activity.


Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/citologia , Nanopartículas Metálicas/toxicidade , Coroa de Proteína/química , Prata/toxicidade , Adsorção , Animais , Proteínas Sanguíneas/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Camundongos , Células NIH 3T3
6.
Langmuir ; 34(12): 3604-3609, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29510051

RESUMO

We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.

7.
Acc Chem Res ; 47(8): 2692-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25068634

RESUMO

This Account aims to describe our experience in the use of patterning techniques for addressing the self-organization processes of materials into spatially confined regions on technologically relevant surfaces. Functional properties of materials depend on their chemical structure, their assembly, and spatial distribution at the solid state; the combination of these factors determines their properties and their technological applications. In fact, by controlling the assembly processes and the spatial distribution of the resulting structures, functional materials can be guided to technological and specific applications. We considered the principal self-organizing processes, such as crystallization, dewetting and phase segregation. Usually, these phenomena produce defective molecular films, compromising their use in many technological applications. This issue can be overcome by using patterning techniques, which induce molecules to self-organize into well-defined patterned structures, by means of spatial confinement. In particular, we focus our attention on the confinement effect achieved by stamp-assisted deposition for controlling size, density, and positions of material assemblies, giving them new chemical/physical functionalities. We review the methods and principles of the stamp-assisted spatial confinement and we discuss how they can be advantageously exploited to control crystalline order/orientation, dewetting phenomena, and spontaneous phase segregation. Moreover, we highlight how physical/chemical properties of soluble functional materials can be driven in constructive ways, by integrating them into operating technological devices.

8.
Chemistry ; 21(30): 10666-70, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095511

RESUMO

We report herein an efficient, fast, and simple synthesis of an imine-based covalent organic framework (COF) at room temperature (hereafter, RT-COF-1). RT-COF-1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2 . The room-temperature synthesis has enabled us to fabricate and position low-cost micro- and submicropatterns of RT-COF-1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink-jet printing.

9.
Langmuir ; 30(39): 11591-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25222857

RESUMO

The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.


Assuntos
Compostos de Sulfidrila/química , Adsorção , Eletroquímica , Ouro/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Propriedades de Superfície
10.
Nano Lett ; 13(8): 3643-7, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879239

RESUMO

The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm(2) V(-1) s(-1) for electrons and 0.70 cm(2) V(-1) s(-1) for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.


Assuntos
Nanoestruturas/química , Polímeros/química , Estrutura Molecular , Semicondutores
11.
Chem Soc Rev ; 41(12): 4430-43, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22491348

RESUMO

Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.

12.
J Pers Med ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836400

RESUMO

Inflammatory bowel diseases show a gender bias, as reported for several other immune-mediated diseases. Female-specific differences influence disease presentation and activity, leading to a different progression between males and females. Women show a genetic predisposition to develop inflammatory bowel disease related to the X chromosome. Female hormone fluctuation influences gastrointestinal symptoms, pain perception, and the state of active disease at the time of conception could negatively affect the pregnancy. Women with inflammatory bowel disease report a worse quality of life, higher psychological distress, and reduced sexual activity than male patients. This narrative review aims to resume the current knowledge of female-related features in clinical manifestations, development, and therapy, as well as sexual and psychological implications related to inflammatory bowel disease. The final attempt is to provide gastroenterologists with a roadmap of female-specific differences, to improve patients' diagnosis, management, and treatment.

13.
Nutrients ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904090

RESUMO

Celiac disease (CD) is an autoimmune disorder caused by gluten ingestion in genetically predisposed individuals. In addition to the typical gastrointestinal symptoms (e.g., diarrhea, bloating, and chronic abdominal pain), CD may also present with a broad spectrum of manifestations, including low bone mineral density (BMD) and osteoporosis. The etiopathology of bone lesions in CD is multifactorial and other conditions, rather than mineral and vitamin D malabsorption, may affect skeletal health, especially those related to the endocrine system. Here, we describe CD-induced osteoporosis in an attempt to enlighten new and less-known aspects, such as the influence of the intestinal microbiome and sex-related differences on bone health. This review describes the role of CD in the development of skeletal alterations to provide physicians with an updated overview on this debated topic and to improve the management of osteoporosis in CD.


Assuntos
Doença Celíaca , Glutens , Osteoporose , Doença Celíaca/complicações , Osteoporose/etiologia , Densidade Óssea , Doenças Ósseas Metabólicas , Glutens/efeitos adversos , Vitamina D
14.
RSC Adv ; 13(38): 26550-26562, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692352

RESUMO

The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes. Besides, the addition of a surfactant (Pluronic F-127) allowed to modify the morphology of the membranes whereas the use of graphene oxide (GO) enabled further photo-activated antibacterial activity. The three additives were tested in various concentrations and in different combinations in order to carefully explore the effects of their mixing on the final photophysical and photodynamic properties. A complete structural/morphologycal characterization of the produced membranes has been performed, together with a detailed photophysical study of the TPP-containing samples, including absorption and emission features, excited state lifetime, singlet oxygen production, and confocal analysis. Their antibacterial activity has been assessed in vitro against S. aureus and E. coli, and the results demonstrated excellent bacterial inactivation for the membranes containing a combination of the three additives, revealing also a non-innocent role of the membrane porous structure in the final antibacterial capacity.

15.
Nanotechnology ; 23(5): 055605, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22236659

RESUMO

We present a novel process of immobilization of gold nanorods (GNRs) on a glass surface. We demonstrate that by exploiting monolayer protection of the GNRs, their unusual optical properties can be completely preserved. UV-visible spectroscopy and atomic force microscopy analysis are used to reveal the optical and morphological properties of monolayer protected immobilized lipophilic GNRs, and molecular dynamics simulations are used to elucidate their surface molecule arrangements.


Assuntos
Vidro/química , Ouro/química , Nanotubos/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nanotubos/ultraestrutura , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
16.
Chempluschem ; 87(3): e202100562, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35312184

RESUMO

Structural defects, such as heteroatoms or atomic vacancies, are always present in materials and significantly affect their physical properties, in both positive or unwanted ways. Interestingly, defects generate an impressive range of functionalities in many materials, such as catalysis, electrical and thermal conductivity tuning, thermoelectricity, enhanced ion storage, magnetism, and others. These properties enable the use of defective materials in a great variety of technological applications. Here we review the principal properties generated by atomic vacancies in 2D compounds and thin films of transition metal dichalcogenides and the most consolidated methods for their formation and engineering. Eventually, we critically analysed the most important advantages, the limits and the current open challenges.

17.
Nanoscale ; 14(39): 14385-14432, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36169572

RESUMO

The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.

18.
J Am Chem Soc ; 133(22): 8654-61, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21526797

RESUMO

Functional supramolecular architectures for bottom-up organic nano- and microtechnology are a high priority research topic. We discovered a new recognition algorithm, resulting from the combination of thioalkyl substituents and head-to-head regiochemistry of substitution, to induce the spontaneous self-assembly of sulfur overrich octathiophenes into supramolecular crystalline fibers combining high charge mobility and intense fluorescence. The fibers were grown on various types of surfaces either as superhelices or straight rods depending on molecular structure. Helical fibers directly grown on a field effect transistor displayed efficient charge mobility and intrinsic 'memory effect'. Despite the fact that the oligomers did not have chirality centers, one type of hand-helicity was always predominant in helical fibers, due to the interplay of molecular atropisomerism and supramolecular helicity induced by terminal substituents. Finally, we found that the new sulfur overrich oligothiophenes can easily be prepared in high yields through ultrasound and microwave assistance in green conditions.

19.
Langmuir ; 27(7): 4076-81, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21366277

RESUMO

We present a study on thin deposits and patterning of 1-D spin-crossover compounds Fe(II)-(L)(2)H](ClO(4))(3)·MeOH [L = 4'-(4'''-pyridyl)-1,2':6'1''-bis- (pyrazolyl) pyridine] (1) that exhibit a reversible, thermally driven spin transition at room temperature. Micrometric rodlike crystals of 1 on silicon surfaces are achieved by drop casting and solvent annealing. We observed that the crystallinity of thin deposits and spin-transition properties critically depends on the deposition procedure. Furthermore, we proved processability and patterning using unconventional wet lithography that reduces the crystallite formation time by 1 order of magnitude. Thin deposits of 1 were characterized by atomic force microscopy, polarized optical microscopy and X-rays, and the switching properties were characterized by Raman spectroscopy.

20.
Nanoscale ; 13(33): 14119-14129, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477693

RESUMO

Nanoparticles (NPs) have been studied for biomedical applications, ranging from prevention, diagnosis and treatment of diseases. However, the lack of the basic understanding of how NPs interact with the biological environment has severely limited their delivery efficiency to the target tissue and clinical translation. Here, we show the effective regulation of the surface properties of NPs, by controlling the surface ligand density, and their effect on serum protein adsorption, cellular uptake and cytotoxicity. The surface properties of NPs are tuned through the controlled replacement of native ligands, which favor protein adsorption, with ligands capable of increasing protein adsorption resistance. The extent and composition of the protein layer adsorbed on NPs are strongly correlated to the degree of ligands replaced on their surface and, while BSA is the most abundant protein detected, ApoE is the one whose amount is most affected by surface properties. On increasing the protein resistance, cellular uptake and cytotoxicity in mouse embryonic fibroblasts of NPs are drastically reduced, but the surface coating has no effect on the process by which NPs mainly induce cell death. Overall, this study reveals that the tuning of the surface properties of NPs allows us to regulate their biological outcomes by controlling their ability to adsorb serum proteins.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Animais , Proteínas Sanguíneas , Fibroblastos , Nanopartículas Metálicas/toxicidade , Camundongos , Prata , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa