Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(24): 36055-36069, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379709

RESUMO

We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with spatial mode filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and with low power consumption. The approach is theoretically evaluated with simulations predicting over 20 dB of isolation and 2.6 dB of insertion loss with a 370 GHz optical bandwidth and 1 cm device length. The isolator uses only 1 mW of electrical drive power, an improvement of 1-3 orders of magnitude over the state of the art. The electronic drive and lack of magneto-optic materials suggest the potential for straightforward integration with drive circuits, including in monolithic CMOS electronic-photonic platforms, enabling a fully contained 'black box' optical isolator with two optical ports and DC electrical power.

2.
Opt Express ; 27(3): 1929-1940, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732239

RESUMO

This paper reports on large field-of-regard, high-efficiency, and large aperture active optical phased arrays (OPAs) for optical beam steering in LIDAR systems. The fabricated 5 mm-long silicon photonic OPA with a 1.3 µm waveguide pitch achieved adjacent waveguide crosstalk below -12dB. A relatively large and uniform emission aperture has been achieved with a low-contrast silicon nitride assisted grating (~20 dB/cm) whose emission profile can be further optimized using an apodized design. The fabricated silicon-photonic OPA demonstrated > 40° lateral beam steering with no sidelobes in a ± 33° field-of-regard and 3.3° longitudinal beam steering via wavelength tuning by 20 nm centered at 1550 nm. We have fully integrated the silicon photonic OPA device with electronic controls and successfully demonstrated 2-dimensional coherent optical beam steering of pre-planned far-field patterns. Future improvements include placement of a distributed Bragg reflector (DBR) underneath the grating emitter in order to achieve nearly a factor of two improvement in emission efficiency.

3.
Opt Express ; 25(9): 10322-10334, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468405

RESUMO

We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

4.
Opt Lett ; 40(9): 2120-3, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927800

RESUMO

We propose coupled-cavity triply-resonant systems for degenerate-pump four-wave mixing (FWM) applications that support strong nonlinear interaction between distributed pump, signal and idler modes, and allow independent coupling of the pump mode and signal/idler modes to separate ports based on nonuniform supermode profile. We demonstrate seeded FWM with wavelength conversion efficiency of -54 dB at input pump power of 3.5 dBm, and discuss applications of such orthogonal supermode coupling.

5.
Opt Lett ; 39(14): 4136-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121670

RESUMO

We propose a new type of laser resonator based on imaginary energy-level splitting (imaginary coupling or quality factor Q-splitting) in a pair of coupled microcavities. A particularly advantageous arrangement involves two microring cavities with different free-spectral ranges in a configuration wherein they are coupled by far-field interference in a shared radiation channel. A novel Vernier-like effect for laser resonators is designed in which only one longitudinal resonant mode has a lower loss than the small-signal gain and can achieve lasing while all other modes are suppressed. This configuration enables ultrawidely tunable single-frequency lasers based on either homogeneously or inhomogeneously broadened gain media. The concept is an alternative to the common external cavity configurations for achieving tunable single-mode operation in a laser. The proposed laser concept builds on a high-Q "dark state," which is established by radiative interference coupling and bears a direct analogy to parity-time symmetric Hamiltonians in optical systems. Variants of this concept should be extendable to parametric-gain-based oscillators, enabling widely tunable single-frequency light sources.

6.
Opt Lett ; 39(19): 5689-92, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360960

RESUMO

We propose and demonstrate mode coupling as a viable dispersion compensation technique for phase-matched resonant four-wave mixing (FWM). We demonstrate a dual-cavity resonant structure that employs coupling-induced frequency splitting at one of three resonances to compensate for cavity dispersion, enabling phase matching. Coupling strength is controlled by thermal tuning of one cavity enabling active tuning of the resonant frequency matching. In a fabricated silicon microresonator, we show an 8 dB enhancement of seeded FWM efficiency over the noncompensated state. The measured FWM has a peak wavelength conversion efficiency of -37.9 dB across a free spectral range (FSR) of 3.334 THz (∼27 nm), which is, to the best of our knowledge, the largest in a silicon microresonator to demonstrate FWM to date. This form of dispersion compensation can be beneficial for many devices, including wavelength converters, parametric amplifiers, and widely detuned photon-pair sources. Apart from compensating dispersion, the proposed mechanism can alternatively be utilized in an otherwise dispersionless resonator to counteract the detuning effect of self- and cross-phase modulation on the pump resonance during FWM, thereby addressing a fundamental issue in the performance of light sources such as broadband optical frequency combs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa