RESUMO
Phenotypic adaptation is a universal feature of biological systems navigating highly variable environments. Recent empirical data support the role of memory-driven decision making in cellular systems navigating uncertain future nutrient landscapes, wherein a distinct growth phenotype emerges in fluctuating conditions. We develop a simple stochastic mathematical model to describe memory-driven cellular adaptation required for systems to optimally navigate such uncertainty. In this framework, adaptive populations traverse dynamic environments by inferring future variation from a memory of prior states, and memory capacity imposes a fundamental trade-off between the speed and accuracy of adaptation to new fluctuating environments. Our results suggest that the observed growth reductions that occur in fluctuating environments are a direct consequence of optimal decision making and result from bet hedging and occasional phenotypic-environmental mismatch. We anticipate that this modeling framework will be useful for studying the role of memory in phenotypic adaptation, including in the design of temporally varying therapies against adaptive systems.
Assuntos
Adaptação Fisiológica , Meio Ambiente , Adaptação Fisiológica/genética , Seleção Genética , Evolução Biológica , FenótipoRESUMO
The advent of cancer immunotherapy has generated renewed hope for the treatment of many malignancies by introducing a number of novel strategies that exploit various properties of the immune system. These therapies are based on the idea that cytotoxic T lymphocytes (CTLs) directly recognize and respond to tumor-associated neoantigens (TANs) in much the same way as they would to foreign peptides presented on cell surfaces. To date, however, nearly all attempts to optimize immunotherapeutic strategies have been empirical. Here, we develop a model of T cell selection based on the assumption of random interaction strengths between a self-peptide and the various T cell receptors. The model enables the analytical study of the effects of selection on the CTL recognition of TANs and completely foreign peptides and can estimate the number of CTLs that can detect donor-matched transplants. We show that negative selection thresholds chosen to reflect experimentally observed thymic survival rates result in near-optimal production of T cells that are capable of surviving selection and recognizing foreign antigen. These analytical results are confirmed by simulation.
Assuntos
Antígenos de Neoplasias/imunologia , Modelos Imunológicos , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Humanos , Imunoterapia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/patologia , Timo/patologiaRESUMO
The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance-two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid E/M phenotype (s) and tumor aggressiveness, we integrate two computational methods-(a) RACIPE-to identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory network, and (b) EMT scoring metric-to calculate the probability that a given gene expression profile displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression data generated from a core EMT regulatory network and classify the gene expression profiles into relevant categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with hierarchical clustering readouts of RACIPE-generated gene expression data. We also show how the EMT scoring metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene expression data.
Assuntos
Transição Epitelial-Mesenquimal , Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Biologia Computacional , Células Epiteliais/metabolismo , Mesoderma/fisiologia , Modelos Genéticos , FenótipoRESUMO
It is now well-established that the host's adaptive immune system plays an important role in identifying and eliminating cancer cells in much the same way that intracellular pathogens are cleared during an adaptive immune response to infection. From a therapeutic standpoint, the adaptive immune system is unique in that it can co-evolve alongside a developing tumor. Tumor acquisition of immune evasive phenotypes, such as class-I MHC down-regulation, remains a major limitation of successful T-cell immunotherapy. Here, we consider a population dynamical model coupling tumor and adaptive immune compartments in order to study the dynamics and survival of an evolving threat when faced with adaptive immune pressure. We demonstrate that predicted optimal growth strategies depend on whether or not the threat may acquire an immune-evasive phenotype as well as the mode of immune detection. We parameterize adaptive immune functioning by T-cell turnover and repertoire diversity and predict that decreases in the latter quantity which occur in advanced age may substantially affect the ability to recognize, and therefore control, an immune evasive threat like cancer. This framework recapitulates general features of age-dependent AML incidence, thereby providing a probable association between cancer frequency and adaptive immune functioning. Lastly, we quantify therapeutic efficacy of adjuvant immunotherapeutic strategies, and predict their benefits and limitations with regard to handling immune evasion. Our model generates survival behavior consistent with known growth-dependent characteristics, and serves as a first attempt at modeling stochastic cancer evolution alongside an adaptive immune compartment.
Assuntos
Imunidade Celular , Modelos Imunológicos , Neoplasias/imunologia , Linfócitos T/imunologia , Evasão Tumoral , Transferência Adotiva , Humanos , Neoplasias/patologia , Neoplasias/terapia , Processos Estocásticos , Linfócitos T/patologiaRESUMO
The epithelial-to-mesenchymal transition (EMT) provides crucial insights into the metastatic process and possesses prognostic value within the cancer context. Here, we present COMET, an R package for inferring EMT trajectories and inter-state transition rates from single-cell RNA sequencing data. We describe steps for finding the optimal number of EMT genes for a specific context, estimating EMT-related trajectories, optimal fitting of continuous-time Markov chain to inferred trajectories, and estimating inter-state transition rates.
Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias/patologia , Análise de Sequência de RNARESUMO
T-cell receptors (TCRs) play a critical role in the immune response by recognizing specific ligand peptides presented by major histocompatibility complex (MHC) molecules. Accurate prediction of peptide binding to TCRs is essential for advancing immunotherapy, vaccine design, and understanding mechanisms of autoimmune disorders. This study presents a novel theoretical method that explores the impact of feature selection techniques on enhancing the predictive accuracy of peptide binding models tailored for specific TCRs. To evaluate the universality of our approach across different TCR systems, we utilized a dataset that includes peptide libraries tested against three distinct murine TCRs. A broad range of physicochemical properties, including amino acid composition, dipeptide composition, and tripeptide features, were integrated into the machine learning-based feature selection framework to identify key features contributing to binding affinity. Our analysis reveals that leveraging optimized feature subsets not only simplifies the model complexity but also enhances predictive performance, enabling more precise identification of TCR-peptide interactions. The results of our feature selection method are consistent with findings from hybrid approaches that utilize both sequence and structural data as input as well as experimental data. Our theoretical approach highlights the role of feature selection in peptide-TCR interactions, providing a powerful tool for uncovering the molecular mechanisms of the T-cell response and assisting in the design of more advanced targeted therapeutics.
RESUMO
Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the immense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural information to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially reduces the required number of training examples and maintains reliable predictions of TCR-recognition specificity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both closely related and structurally diverse TCR-peptide pairs.
Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Humanos , Ligação Proteica , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Conformação ProteicaRESUMO
Cancer cell populations comprise phenotypes distributed among the epithelial-mesenchymal (E-M) spectrum. However, it remains unclear which population-level processes give rise to the observed experimental distribution and dynamical changes in E-M heterogeneity, including (1) differential growth, (2) cell-state switching, and (3) population density-dependent growth or state-transition rates. Here, we analyze the necessity of these three processes in explaining the dynamics of E-M population distributions as observed in PMC42-LA and HCC38 breast cancer cells. We find that, while cell-state transition is necessary to reproduce experimental observations of dynamical changes in E-M fractions, including density-dependent growth interactions (cooperation or suppression) better explains the data. Further, our models predict that treatment of HCC38 cells with transforming growth factor ß (TGF-ß) signaling and Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/3) inhibitors enhances the rate of mesenchymal-epithelial transition (MET) instead of lowering that of E-M transition (EMT). Overall, our study identifies the population-level processes shaping the dynamics of spontaneous E-M heterogeneity in breast cancer cells.
RESUMO
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are widely studied smart materials, particularly for biomedical applications, but are limited by their mechanical strength. In this study, double network (DN) hydrogels were prepared with an asymmetric crosslink design and inclusion of an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). These P(NIPAAm-co-AMPS)/PNIPAAm DN hydrogels were sequentially formed with a tightly crosslinked 1st network comprised of variable levels of AMPS (100 : 0 to 25 : 75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked 2nd network comprised of PNIPAAm. The impact of AMPS content in the 1st network on the volume phase transition temperature (VPTT), morphology, deswelling-reswelling kinetics and mechanical properties was evaluated. Without substantially altering the VPTT of conventional PNIPAAm hydrogels but with improving thermosensitivity, the DN hydrogel formed with 25 : 75 wt% of NIPAAm:AMPS achieved exceptional strength, high modulus and high %strain at break.
RESUMO
The failure of cancer treatments, including immunotherapy, continues to be a major obstacle in preventing durable remission. This failure often results from tumor evolution, both genotypic and phenotypic, away from sensitive cell states. Here, we propose a mathematical framework for studying the dynamics of adaptive immune evasion that tracks the number of tumor-associated antigens available for immune targeting. We solve for the unique optimal cancer evasion strategy using stochastic dynamic programming and demonstrate that this policy results in increased cancer evasion rates compared to a passive, fixed strategy. Our foundational model relates the likelihood and temporal dynamics of cancer evasion to features of the immune microenvironment, where tumor immunogenicity reflects a balance between cancer adaptation and host recognition. In contrast with a passive strategy, optimally adaptive evaders navigating varying selective environments result in substantially heterogeneous post-escape tumor antigenicity, giving rise to immunogenically hot and cold tumors.
Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Imunoterapia/métodos , Microambiente Tumoral , Evasão Tumoral , Evasão da Resposta ImuneRESUMO
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Humanos , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade/metabolismo , Linfócitos TRESUMO
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.
RESUMO
Epithelial-mesenchymal transition (EMT) and its reverse mesenchymal-epithelial transition (MET) are critical during embryonic development, wound healing and cancer metastasis. While phenotypic changes during short-term EMT induction are reversible, long-term EMT induction has been often associated with irreversibility. Here, we show that phenotypic changes seen in MCF10A cells upon long-term EMT induction by TGFß need not be irreversible, but have relatively longer time scales of reversibility than those seen in short-term induction. Next, using a phenomenological mathematical model to account for the chromatin-mediated epigenetic silencing of the miR-200 family by ZEB family, we highlight how the epigenetic memory gained during long-term EMT induction can slow the recovery to the epithelial state post-TGFß withdrawal. Our results suggest that epigenetic modifiers can govern the extent and time scale of EMT reversibility and advise caution against labelling phenotypic changes seen in long-term EMT induction as 'irreversible'.
Assuntos
Memória Epigenética , Transição Epitelial-Mesenquimal , Epigênese Genética , Fator de Crescimento Transformador betaRESUMO
The T-cell arm of the adaptive immune system provides the host protection against unknown pathogens by discriminating between host and foreign material. This discriminatory capability is achieved by the creation of a repertoire of cells each carrying a T-cell receptor (TCR) specific to non-self-antigens displayed as peptides bound to the major histocompatibility complex (pMHC). The understanding of the dynamics of the adaptive immune system at a repertoire level is complex, due to both the nuanced interaction of a TCR-pMHC pair and to the number of different possible TCR-pMHC pairings, making computationally exact solutions currently unfeasible. To gain some insight into this problem, we study an affinity-based model for TCR-pMHC binding in which a crystal structure is used to generate a distance-based contact map that weights the pairwise amino acid interactions. We find that the TCR-pMHC binding energy distribution strongly depends both on the number of contacts and the repeat structure allowed by the topology of the contact map of choice; this in turn influences T-cell recognition probability during negative selection, with higher variances leading to higher survival probabilities. In addition, we quantify the degree to which neoantigens with mutations in sites with higher contacts are recognized at a higher rate.
RESUMO
PURPOSE: Lehmann et al have identified four molecular subtypes of triple-negative breast cancer (TNBC)-basal-like (BL) 1, BL2, mesenchymal (M), and luminal androgen receptor-and an immunomodulatory (IM) gene expression signature modifier. Our group previously showed that the response of TNBC to neoadjuvant systemic chemotherapy (NST) differs by molecular subtype, but whether NST affects the subtype was unknown. Here, we tested the hypothesis that in patients without pathologic complete response, TNBC subtypes can change after NST. Moreover, in cases with the changed subtype, we determined whether epithelial-to-mesenchymal transition (EMT) had occurred. MATERIALS AND METHODS: From the Pan-Pacific TNBC Consortium data set containing TNBC patient samples from four countries, we examined 64 formalin-fixed, paraffin-embedded pairs of matched pre- and post-NST tumor samples. The TNBC subtype was determined using the TNBCtype-IM assay. We analyzed a partial EMT gene expression scoring metric using mRNA data. RESULTS: Of the 64 matched pairs, 36 (56%) showed a change in the TNBC subtype after NST. The most frequent change was from BL1 to M subtypes (38%). No tumors changed from M to BL1. The IM signature was positive in 14 (22%) patients before NST and eight (12.5%) patients after NST. The EMT score increased after NST in 28 (78%) of the 36 patients with the changed subtype (v 39% of the 28 patients without change; P = .002254). CONCLUSION: We report, to our knowledge, for the first time that the TNBC molecular subtype and IM signature frequently change after NST. Our results also suggest that EMT is promoted by NST. Our findings may lead to innovative adjuvant therapy strategies in TNBC cases with residual tumor after NST.
Assuntos
Neoplasias de Mama Triplo Negativas , Perfilação da Expressão Gênica , Humanos , Imunoterapia , Terapia Neoadjuvante , Transcriptoma , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
Cancer represents a diverse collection of diseases characterized by heterogeneous cell populations that dynamically evolve in their environment. As painfully evident in cases of treatment failure and recurrence, this general feature makes identifying long-term successful therapies difficult. It is now well-established that the adaptive immune system recognizes and eliminates cancer cells, and various immunotherapeutic strategies have emerged to augment this effect. These therapies, while promising, often fail as a result of immune-specific cancer evasion. Increasingly available empirical evidence details both cancer and immune system populations pre- and post-treatment, providing rich opportunity for mathematical models of the tumor-immune interaction and subsequent co-evolution. Integrated mathematical and experimental efforts bear immediate relevance for optimized therapies and will undoubtedly accelerate our understanding of this emergent field.
Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Humanos , Terapia de Alvo Molecular , Evasão TumoralRESUMO
Inflammatory breast cancer (IBC) is a highly aggressive breast cancer that metastasizes largely via tumor emboli, and has a 5-year survival rate of less than 30%. No unique genomic signature has yet been identified for IBC nor has any specific molecular therapeutic been developed to manage the disease. Thus, identifying gene expression signatures specific to IBC remains crucial. Here, we compare various gene lists that have been proposed as molecular footprints of IBC using different clinical samples as training and validation sets and using independent training algorithms, and determine their accuracy in identifying IBC samples in three independent datasets. We show that these gene lists have little to no mutual overlap, and have limited predictive accuracy in identifying IBC samples. Despite this inconsistency, single-sample gene set enrichment analysis (ssGSEA) of IBC samples correlate with their position on the epithelial-hybrid-mesenchymal spectrum. This positioning, together with ssGSEA scores, improves the accuracy of IBC identification across the three independent datasets. Finally, we observed that IBC samples robustly displayed a higher coefficient of variation in terms of EMT scores, as compared to non-IBC samples. Pending verification that this patient-to-patient variability extends to intratumor heterogeneity within a single patient, these results suggest that higher heterogeneity along the epithelial-hybrid-mesenchymal spectrum can be regarded to be a hallmark of IBC and a possibly useful biomarker.
RESUMO
Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at the heart of improved cancer immunotherapy, but predictive models capable of high-throughput assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystallography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune repertoire level. RACER applies supervised machine learning to efficiently and accurately resolve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system. When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER accurately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus demonstrating its utility in helping address the large computational challenge of reliably identifying the properties of tumor antigen-specific T-cells at the level of an individual patient's immune repertoire.
RESUMO
Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics-each derived using a different gene list and algorithm-that quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer.
Assuntos
Células-Tronco Pluripotentes Induzidas , Transcriptoma , Linhagem Celular Tumoral , Reprogramação Celular , Transição Epitelial-Mesenquimal/genética , HumanosRESUMO
The dynamic interactions between an evolving malignancy and the adaptive immune system generate diverse evolutionary trajectories that ultimately result in tumor clearance or immune escape. Here, we create a simple mathematical model coupling T-cell recognition with an evolving cancer population that may randomly produce evasive subclones, imparting transient protection against the effector T cells. T-cell turnover declines and evasion rates together explained differences in early incidence data across almost all cancer types. Fitting the model to TRACERx evolutionary data argued in favor of substantial and sustained immune pressure exerted upon a developing tumor, suggesting that clinically observed incidence is a small proportion of all cancer initiation events. This dynamical model promises to increase our quantitative understanding of many immune escape contexts, including cancer progression and intracellular pathogenic infections. SIGNIFICANCE: The early cancer-immune interaction sculpts intratumor heterogeneity through the selection of immune-evasive clones. This study provides a mathematical framework for investigating the coevolution between an immune-evasive cancer population and the adaptive immune system.