RESUMO
Herein, we report the design, synthesis, structure, and electrochemical study of doubly ßC-B-N fused Ni(II) porphyrins (1-trans, 1-cis, 2-trans, and 2-cis). These compounds have been synthesized from A2B2 type dipyridyl Ni(II) porphyrins (Ar=Ph for 1 a; Ar=C6F5 for 2 a) via Lewis base-directed electrophilic aromatic borylation reactions. The solution state structures of these compounds have been established using 1H NMR, 11B NMR, 1H-1H COSY, 1H-13C HSQC, and 19F-13C HSQC NMR techniques. Single crystal X-ray analysis have revealed that 1-trans, 1-cis, and 2-trans adopt ruffled conformations, with alternate meso-carbons on the opposite sides of the mean porphyrin plane. The Soret bands in the absorption spectra of the B-N fused molecules are ~40â nm redshifted compared to unfused Ni(II) porphyrin precursors. The B-N fusion have diminished the redox potential of fused porphyrins. Although 1-trans and 1-cis, show four oxidation processes, 2-trans and 2-cis show only three oxidation processes. DFT studies have revealed that the tetrahedral geometry of the boron has induced a twist in the π-conjugation, which destabilizes the HOMO and stabilizes the LUMO in 1-trans, 1-cis, 2-trans, and 2-cis.
RESUMO
Optical chirality sensing has gained significant attention in recent years. Within this field, the quest for stereodynamic chiroptical probes capable of detecting cryptochiral guests presents a formidable challenge. Macrocycles exhibiting planar chirality have emerged as promising candidates for amplifying the chirality of cryptochiral guests. In this study, we demonstrate that the formation of host-guest complexes between cryptochiral molecules and planar chiral prismarenes triggers electronic circular dichroism (ECD) signals via host-guest complexation-induced chirality amplification. The absolute configuration of the most stable chiral macrocyclic host-guest complex has been established by resorting to both exciton model and DFT computations. Furthermore, we demonstrated that this supramolecular chirality sensing system can be employed to determine the enantiomeric composition of scalemic mixtures by measuring the ECD bands intensity. The information described here opens the way for the use of prismarenes as stereodynamic probes for sensing of cryptochiral guests.
RESUMO
The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16-O-methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16-O-methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics. A conformational change of the protein was also observed by circular dichroism, particularly for cafestol. These results provide evidence at the molecular level of the interactions of FXR with the coffee diterpenes, confirming that cafestol can act as an agonist of FXR, causing an enhancement of the cholesterol level in blood serum.
Assuntos
Colesterol , Café , Diterpenos , Receptores Citoplasmáticos e Nucleares , Diterpenos/farmacologia , Diterpenos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Colesterol/metabolismo , Humanos , Café/química , Simulação de Acoplamento Molecular , Ligação Proteica , Simulação de Dinâmica Molecular , Dicroísmo CircularRESUMO
We recently introduced calix[n]naphth[m]arenes as a novel class of deep-cavity hybrid macrocycles constituted by phenol (n) and naphthalene (m) units. In this study, we report the synthesis, conformational analysis, spectroscopic properties, and solid-state structures of calix[4]naphth[4]arene (C4N4) and its permethylated analog (C4N4-Me), thereby expanding the calix[n]naphth[m]arene family. C4N4 was synthesized through a 2 + 2 fragment coupling macrocyclization under acidic conditions, where the solvent played a crucial role in selectively forming the C4N4 derivative. The X-ray structure of C4N4 reveals a chair-like 1,2,3,4-alternate conformation characterized by two opposing 3/4-cone moieties stabilized by intramolecular hydrogen bonds. In contrast, the X-ray structure of C4N4-Me exhibits a 1,3,5,7-alternate conformation.
RESUMO
Here, we present the crystal structure of the synthetic peptide KE1, which contains four K-coil heptads separated in the middle by the QFLMLMF heptad. The structure determination reveals the presence of a canonical parallel three stranded coiled coil. The geometric characteristics of this structure are compared with other coiled coils with the same topology. Furthermore, for this topology, the analysis of the propensity of the single amino acid to occupy a specific position in the heptad sequence is reported. A number of viral proteins use specialized coiled coil tail needles to inject their genetic material into the host cells. The simplicity and regularity of the coiled coil arrangement made it an attractive system for de novo design of key molecules in drug delivery systems, vaccines, and therapeutics.
RESUMO
The confused-prism[5]arene macrocycle (c-PrS[5]Me ) shows conformational adaptive behavior in the presence of ammonium guests. Upon guest inclusion, the 1,4-bridged naphthalene flap reverses its planar chirality from pS to pR (with reference to the pS(pR)4 enantiomer). Stereoselective directional threading is also observed in the presence of directional axles, in which up/down stereoisomers of homochiral (pR)5 -c-PrS[5]Me pseudorotaxanes are formed.
RESUMO
Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.
Assuntos
COVID-19 , Complexos de Coordenação , Humanos , Cloroquina/farmacologia , Cloroquina/química , Simulação de Dinâmica Molecular , Zinco/química , Cloretos , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , MetaisRESUMO
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host-guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host-guest complex with an association constant of 1.5×106 â M-1 . At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X-ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Assuntos
Hidrocarbonetos Aromáticos com Pontes , Quinolinas , Hidrocarbonetos Aromáticos com Pontes/química , Corantes , Compostos Heterocíclicos com 2 Anéis , Imidazolidinas , Compostos Macrocíclicos , Espectroscopia de Ressonância Magnética , Polímeros , Água/químicaRESUMO
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Assuntos
Hidroxocobalamina , Vitamina B 12 , Vitamina B 12/química , Hidroxocobalamina/química , Suplementos Nutricionais , Vitaminas , DietaRESUMO
Direct O-alkylation of p-tert-butyldihomooxacalix[4]arene (1) with N-(bromopropyl)- or N-(bromoethyl)phthalimides and K2CO3 in acetonitrile was conducted under conventional heating (reflux) and using microwave irradiation and ball milling methodologies. The reactions afforded mono- and mainly distal di-substituted derivatives in the cone conformation, in a total of eight compounds. They were isolated by column chromatography, and their conformations and the substitution patterns were established by NMR spectroscopy (1H, 13C, COSY and NOESY experiments). The X-ray structures of four dihomooxacalix[4]arene phthalimide derivatives (2a, 3a, 3b and 5a) are reported, as well as their photophysical properties. The microwave (MW)-assisted alkylations drastically reduced the reaction times (from days to less than 45 min) and produced higher yields of both 1,3-di-substituted phthalimides (3a and 6a) with higher selectivity. Ball milling did not reveal to be a good method for this kind of reaction.
RESUMO
The novel title macrocycles, based on methylene-bridged 1,5-naphthalene units, have been obtained by template effect in a thermodynamically controlled synthesis. In detail, the prism[5]arene 1 or the prism[6]arene 3 was selectively removed from the equilibrium mixture by using the complementary ammonium-templating agent. When only the solvent 1,2-DCE was used, the 1,4-confused derivative 2 was obtained. The prism[5]arene here described shows a deep π-electron-rich aromatic cavity that exhibits a great affinity for the quaternary ammonium guests, originating from favorable cation···π and +NC-H···π interactions. This recognition motif is the basis of the templated synthesis of the prism[n]arenes here reported.
RESUMO
Amino acid stereoconfiguration has been shown to play a key role in the self-assembly of unprotected tripeptides into hydrogels under physiological conditions. Dramatic changes were noted for hydrophobic sequences based on the diphenylalanine motif from the formation of amorphous aggregates in the case of homochiral peptides to nanostructured and stable hydrogels in the case of heterochiral stereoisomers. Herein, we report that by further shortening the sequence to a dipeptide, the overall differences between isomers are less marked, with both homo- and hetero-chiral dipeptides forming gels, although with different stability over time. The soft materials are studied by a number of spectroscopic and microcopic techniques, and single-crystal X-ray diffraction to unveil the supramolecular interactions of these hydrogel building blocks.
Assuntos
Dipeptídeos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , EstereoisomerismoRESUMO
Calix[6]arenes bearing adamantyl groups at the exo-rim form pseudorotaxanes with dialkylammonium axles paired to the weakly coordinating [B(ArF)4]- anion. The exo-adamantyl groups give rise to a more efficient threading with respect to the exo-tert-butyl ones, leading to apparent association constants more than one order of magnitude higher. This improved stability has been ascribed to the more favorable van der Waals interactions of exo-adamantyls versus exo-tert-butyls with the cationic axle. Calix[6]arenes bearing endo-OH functions give rise to a less efficient threading with respect to the endo-OR ones, in line with what was known from the complexation of alkali metal cations.
RESUMO
Sulfonato-calix[n]arenes (sclxn) are promising tools to generate crystalline protein frameworks. We report, for the first time, a lower rim functionalised octa-anionic calix[4]arene (sclx4mc) in complex with proteins. Two crystal structures of sclx4mc bound to yeast or horse heart cytochrome c (cytc) are described. Highly porous honeycomb or tubular assemblies were obtained with yeast or horse cytc, respectively. Related frameworks were obtained previously with sclx8 and sclx6 but not with sclx4, suggesting that the ligand charge is a determining factor.
Assuntos
Calixarenos/química , Citocromos c/química , Fenóis/química , Porosidade , Proteínas/química , Animais , Ânions/química , Cristalização , Cristalografia por Raios X , Cavalos , Ligantes , Estrutura Molecular , LevedurasRESUMO
The chiral (R)-10-hydroxystearic acid ((R)-10-HSA) is a positional homologue of both (R)-12-HSA and (R)-9-HSA with the OH group in an intermediate position. While (R)-12-HSA is one of the best-known low-molecular-weight organogelators, (R)-9-HSA is not, but it forms crystals in several solvents. With the aim to gain information on the structural role of hydrogen-bonding interactions of the carbinol OH groups, we investigated the behavior of (R)-10-HSA in various solvents. This isomer displays an intermediate behavior between (R)-9 and (R)-12-HSA, producing a stable gel exclusively in paraffin oil, while it crystallizes in other organic solvents. Here, we report the X-ray structure of a single crystal of (R)-10-HSA as well as some structural information on its polymorphism, obtained through X-ray Powder Diffraction (XRPD) and Infrared Spectroscopy (IR). This case study provides new elements to elucidate the structural determinants of the microscopic architectures that lead to the formation of organogels of stearic acid derivatives.
Assuntos
Cristalização , Géis/química , Solventes/química , Ácidos Esteáricos/química , Ligação de Hidrogênio , Peso Molecular , EstereoisomerismoRESUMO
Since the discovery of fullerene, carbon-based nanomolecules sparked a wealth of research across biological, medical and material sciences. Understanding the interactions of these materials with biological samples at the atomic level is crucial for improving the applications of nanomolecules and address safety aspects concerning their use in medicine. Protein crystallography provides the interface view between proteins and carbon-based nanomolecules. We review forefront structural studies of nanomolecules interacting with proteins and the mechanism underlying these interactions. We provide a systematic analysis of approaches used to select proteins interacting with carbon-based nanomolecules explored from the worldwide Protein Data Bank (wwPDB) and scientific literature. The analysis of van der Waals interactions from available data provides important aspects of interactions between proteins and nanomolecules with implications on functional consequences. Carbon-based nanomolecules modulate protein surface electrostatic and, by forming ordered clusters, could modify protein quaternary structures. Lessons learned from structural studies are exemplary and will guide new projects for bioimaging tools, tuning of intrinsically disordered proteins, and design assembly of precise hybrid materials.
Assuntos
Carbono/farmacologia , Ligantes , Modelos Moleculares , Proteínas/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/metabolismoRESUMO
The design and synthesis of a novel tert-butyl-calix[4]arene functionalized at 1, 3 positions of the lower rim with two terminal 2-hydroxybenzeledene-thiosemicarbazone moieties is reported. The new ligand with multi-dentate chelating properties was fully characterized by several techniques: ESI-Mass spectroscopy, FT-IR, 1H-NMR, and single crystal X-ray diffraction. The solid state structure confirms that the calix[4]arene macrocycle has the expected open cone conformation, with two opposite phenyl rings inclined outwards with large angles. The conformation of the two alkoxythiosemicarbazone arms produces a molecule with a C2 point group symmetry. An interesting chiral helicity is observed, with the two thiosemicarbazone groups oriented in opposite directions like a two-blade propeller. A water molecule is encapsulated in the center of the two-blade propeller through multiple H-bond coordinations. The antibacterial, antifungal, anticancer, and cytotoxic activities of the calix[4]arene-thiosemicarbazone ligand and its metal derivatives (Co2+, Ni2+, Cu2+, and Zn2+) were investigated. A considerable antibacterial activity (in particular against E. coli, MIC, and MBC = 31.25 µg/mL) was observed for the ligand and its metal derivatives. Significant antifungal activities against yeast (C. albicans) were also observed for the ligand (MIC = 31.25 µg/mL and MBC = 125 µg/mL) and for its Co2+ derivative (MIC = 62.5 µg/mL). All compounds show cytotoxicity against the tested cancerous cells. For the Saos-2 cell line, the promising anticancer activity of ligand L (IC50 < 25 µg/mL) is higher than its metal derivatives. The microscopic analysis of DAPI-stained cells shows that the treated cells change in morphology, with deformation and fragmentation of the nuclei. The hemo-compatibility study demonstrated that this class of compounds are suitable candidates for further in vivo investigations.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Calixarenos/química , Calixarenos/farmacologia , Técnicas de Química Sintética , Modelos Moleculares , Fenóis/química , Fenóis/farmacologia , Tiossemicarbazonas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Calixarenos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Hemólise , Humanos , Ligantes , Fenóis/síntese química , Análise Espectral , Relação Estrutura-AtividadeRESUMO
Fluorescent dihomooxacalix[4]arene-based receptors 5a-5c, bearing two naphthyl(thio)ureido groups at the lower rim via a butyl spacer, were synthesised and obtained in the cone conformation in solution. The X-ray crystal structures of 1,3- (5a) and 3,4-dinaphthylurea (5b) derivatives are reported. Their binding properties towards several anions of different geometries were assessed by 1H-NMR, UV-Vis absorption and fluorescence titrations. Structural and energetic insights of the naphthylurea 5a and 5b complexes were also obtained using quantum mechanical calculations. The data showed that all receptors follow the same trend, the association constants increase with the anion basicity, and the strongest complexes were obtained with F-, followed by the oxoanions AcO- and BzO-. Proximal urea 5b is a better anion receptor compared to distal urea 5a, and both are more efficient than thiourea 5c. Compounds 5a and 5b were also investigated as heteroditopic receptors for biologically relevant alkylammonium salts, such as the neurotransmitter γ-aminobutyric acid (GABA·HCl) and the betaine deoxycarnitine·HCl. Chiral recognition towards the guest sec-butylamine·HCl was also tested, and a 5:2 selectivity for (R)-sec-BuNH3+·Cl- towards (P) or (M) enantiomers of the inherently chiral receptor 5a was shown. Based on DFT calculations, the complex [(S)-sec-BuNH3+·Cl-/(M)-5a] was indicated as the more stable.
Assuntos
Ânions/metabolismo , Calixarenos/química , Corantes Fluorescentes/química , Ânions/química , Betaína/análogos & derivados , Betaína/metabolismo , Carnitina/metabolismo , Cristalografia por Raios X , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Neurotransmissores/metabolismo , Espectrofotometria Ultravioleta , Estereoisomerismo , Ácido gama-Aminobutírico/metabolismoRESUMO
We report here the synthesis of two [8]cycloparaphenylenes ([8]CPP) derivatives, 1 and 2, bearing a monosubstituted benzene moiety. The presence of the substituent implies a planar chirality for the monosubstituted [8]CPP 1 and 2, whose configuration is here described by applying the chirality descriptors pR and pS. Experimental evidence of this planar chirality has been obtained through 1H VT NMR studies and by addition of Pirkle's reagent. This was confirmed by the X-ray crystal structure of 2, which represents an interesting example of solid-state structure of a monosubstituted [8]CPP derivative. Derivative 2 crystallizes in two monoclinic crystal forms (α and ß), which show a herringbone motif. The [8]CPP ring of the α form encapsulates two dichloromethane molecules, held through C-H···π interactions, while in the ß form, open channels are partially filled by highly disordered solvent molecules.
RESUMO
Calix[6]arenes disubstituted at the methylene bridges, which are stable in the cone or 1,2,3-alternate conformation, form pseudorotaxanes with dialkylammonium axles. The cone wheel-based pseudorotaxanes are 10-100 times more stable than those obtained with the native conformationally mobile calix[6]arene wheel, as a consequence of their higher degree of preorganization. The threading of conformationally stable 1,2,3-alternate calix[6]arenes is unprecedented in the literature. Therefore, very peculiar NMR features are here evidenced for this threading process involving the less symmetrical 1,2,3-alternate calix[6]arene conformation, which implies a peculiar rototranslation motion of the axle.