Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 55(1): 132-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956592

RESUMO

Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.


Assuntos
Antraz/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Nicotiana/metabolismo , Receptores de Peptídeos/imunologia , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Coelhos , Receptores de Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Nicotiana/genética
2.
BMC Biochem ; 12: 58, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085466

RESUMO

BACKGROUND: Botulism is caused by botulinum neurotoxins (BoNTs), extremely toxic proteins which can induce respiratory failure leading to long-term intensive care or death. Treatment for botulism includes administration of antitoxins, which must be administered early in the course of the intoxication; therefore, rapid determination of human exposure to BoNT is an important public health goal. In previous work, our laboratory reported on Endopep-MS, a mass spectrometry-based activity method for detecting and differentiating BoNT/A, /B, /E, and /F in clinical samples. We also demonstrated that antibody-capture is effective for purification and concentration of BoNTs from complex matrices such as clinical samples. However, some antibodies inhibit or neutralize the enzymatic activity of BoNT, so the choice of antibody for toxin extraction is critical. RESULTS: In this work, we evaluated 24 anti-BoNT/B monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/B1, /B2, /B3, /B4, and /B5 and to extract those toxins. Among the mAbs, there were significant differences in ability to extract BoNT/B subtypes and inhibitory effect on BoNT catalytic activity. Some of the mAbs tested enhanced the in vitro light chain activity of BoNT/B, suggesting that BoNT/B may undergo conformational change upon binding some mAbs. CONCLUSIONS: In addition to determining in vitro inhibition abilities of a panel of mAbs against BoNT/B1-/B5, this work has determined B12.2 and 2B18.2 to be the best mAbs for sample preparation before Endopep-MS. These mAb characterizations also have the potential to assist with mechanistic studies of BoNT/B protection and treatment, which is important for studying alternative therapeutics for botulism.


Assuntos
Anticorpos Monoclonais/farmacologia , Toxinas Botulínicas/antagonistas & inibidores , Toxinas Botulínicas/isolamento & purificação , Botulismo/metabolismo , Toxinas Botulínicas/imunologia , Toxinas Botulínicas Tipo A , Botulismo/genética , Clostridium botulinum/imunologia , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/metabolismo , Mapeamento de Epitopos , Humanos
3.
Toxins (Basel) ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564645

RESUMO

Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Toxinas Botulínicas/imunologia , Animais , Botulismo/imunologia , Feminino , Humanos , Camundongos , Sorogrupo
4.
Toxins (Basel) ; 10(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494481

RESUMO

Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Toxinas Botulínicas/imunologia , Combinação de Medicamentos , Epitopos , Humanos
5.
Toxins (Basel) ; 7(9): 3405-23, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26343720

RESUMO

Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Botulínicas Tipo A/toxicidade , Animais , Antitoxinas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Epitopos/imunologia , Feminino , Citometria de Fluxo , Concentração Inibidora 50 , Camundongos , Conformação Proteica , Proteólise , Proteínas SNARE/metabolismo , Anticorpos de Cadeia Única/metabolismo
6.
PLoS One ; 10(8): e0135306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275214

RESUMO

The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.


Assuntos
Anticorpos Monoclonais/imunologia , Antitoxinas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Neurotoxinas/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antitoxinas/química , Antitoxinas/metabolismo , Catálise , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Estrutura Terciária de Proteína , Sorogrupo
7.
PLoS One ; 4(4): e5355, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19399171

RESUMO

Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A-G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay.


Assuntos
Anticorpos Monoclonais , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Toxinas Botulínicas Tipo A/isolamento & purificação , Animais , Anticorpos Antibacterianos , Toxinas Botulínicas Tipo A/classificação , Toxinas Botulínicas Tipo A/imunologia , Botulismo/diagnóstico , Botulismo/terapia , Clostridium botulinum tipo A/imunologia , Clostridium botulinum tipo A/patogenicidade , Humanos , Camundongos , Sorotipagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa