Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 18(3): 036001, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33412531

RESUMO

Three-dimensional (3D) multi-cellular aggregates hold important applications in tissue engineering and in vitro biological modeling. Probing the intrinsic forces generated during the aggregation process, could open up new possibilities in advancing the discovery of tissue mechanics-based biomarkers. We use individually suspended, and tethered gelatin hydrogel microfibers to guide multicellular aggregation of brain cancer cells (glioblastoma cell line, U87), forming characteristic cancer 'ellipsoids'. Over a culture period of up to 13 days, U87 aggregates evolve from a flexible cell string with cell coverage following the relaxed and curly fiber contour; to a distinct ellipsoid-on-string morphology, where the fiber segment connecting the ellipsoid poles become taut. Fluorescence imaging revealed the fiber segment embedded within the ellipsoidal aggregate to exhibit a morphological transition analogous to filament buckling under a compressive force. By treating the multicellular aggregate as an effective elastic medium where the microfiber is embedded, we applied a filament post-buckling theory to model the fiber morphology, deducing the apparent elasticity of the cancer ellipsoid medium, as well as the collective traction force inherent in the aggregation process.


Assuntos
Fenômenos Biomecânicos , Hidrogéis/química , Engenharia Tecidual , Células Tumorais Cultivadas/fisiologia , Elasticidade
2.
Glia ; 66(5): 987-998, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29380422

RESUMO

Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Immunoblotting , Hibridização In Situ , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Xenopus laevis
3.
Development ; 142(4): 722-31, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617436

RESUMO

Neural crest cells arise from the border of the neural plate and epidermal ectoderm, migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Although much has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this study, we show that Polycomb repressive complex 2 (PRC2) cooperates with the transcription factor Snail2/Slug to modulate neural crest development in Xenopus. The PRC2 core components Eed, Ezh2 and Suz12 are expressed in the neural crest cells and are required for neural crest marker expression. Knockdown of Ezh2, the catalytic subunit of PRC2 for histone H3K27 methylation, results in defects in neural crest specification, migration and craniofacial cartilage formation. EZH2 interacts directly with Snail2, and Snail2 fails to expand the neural crest domains in the absence of Ezh2. Chromatin immunoprecipitation analysis shows that Snail2 regulates EZH2 occupancy and histone H3K27 trimethylation levels at the promoter region of the Snail2 target E-cadherin. Our results indicate that Snail2 cooperates with EZH2 and PRC2 to control expression of the genes important for neural crest specification and migration during neural crest development.


Assuntos
Crista Neural/citologia , Crista Neural/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Fatores de Transcrição/genética , Xenopus , Proteínas de Xenopus/genética
4.
Adv Healthc Mater ; 13(18): e2303720, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626388

RESUMO

Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease.


Assuntos
Linfonodos , Animais , Linfonodos/imunologia , Camundongos , Dispositivos Lab-On-A-Chip , Camundongos Endogâmicos C57BL
5.
Adv Sci (Weinh) ; 8(18): e2100978, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34292672

RESUMO

Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.


Assuntos
Terapia por Estimulação Elétrica/métodos , Glioblastoma/terapia , Humanos
6.
Lab Chip ; 21(12): 2343-2358, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33969368

RESUMO

Glioblastoma multiforme (GBM) is the most common and the most aggressive type of primary brain malignancy. Glioblastoma stem-like cells (GSCs) can migrate in vascular niches within or away from the tumour mass, increasing tumour resistance to treatments and contributing to relapses. To study individual GSC migration and their interactions with the perivasculature of the tumour microenvironment, there is a need to develop a human organotypic in vitro model. Herein, we demonstrated a perivascular niche-on-a-chip, in a serum-free condition with gravity-driven flow, that supported the stemness of patient-derived GSCs and foetal neural stem cells grown in a three-dimensional environment (3D). Endothelial cells from three organ origins, (i) human brain microvascular endothelial cells (hCMEC/D3), (ii) human umbilical vein endothelial cells (HUVECs) and, (iii) human lung microvascular endothelial cells (HMVEC-L) formed rounded microvessels within the extracellular-matrix integrated microfluidic chip. By optimising cell extraction protocols, systematic studies were performed to evaluate the effects of serum-free media, 3D cell cultures, and the application of gravity-driven flow on the characteristics of endothelial cells and their co-culture with GSCs. Our results showed the maintenance of adherent and tight junction markers of hCMEC/D3 in the serum-free culture and that gravity-driven flow was essential to support adequate viability of both the microvessel and the GSCs in co-culture (>80% viability at day 3). Endpoint biological assays showed upregulation of neovascularization-related genes (e.g., angiopoietins, vascular endothelial growth factor receptors) in endothelial cells co-cultured with GSCs in contrast to the neural stem cell reference that showed insignificant changes. The on-chip platform further permitted live-cell imaging of GSC - microvessel interaction, enabling quantitative analysis of GSC polarization and migration. Overall, our comparative genotypic (i.e. qPCR) and phenotypic (i.e. vessel permeability and GSC migration) studies showed that organotypic (brain cancer cells-brain endothelial microvessel) interactions differed from those within non-tissue specific vascular niches of human origin. The development and optimization of this on-chip perivascular niche, in a serum-free flowable culture, could provide the next level of complexity of an in vitro system to study the influence of glioma stem cells on brain endothelium.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Células-Tronco Neoplásicas , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
7.
Sci Adv ; 6(40)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32998891

RESUMO

Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-µm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area-to-volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.

8.
ACS Appl Mater Interfaces ; 11(22): 19679-19690, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31081331

RESUMO

Building two-dimensional (2D) and three-dimensional (3D) fibrous structures in the micro- and nanoscale will offer exciting prospects for numerous applications spanning from sensors to energy storage and tissue engineering scaffolds. Electrospinning is a well-suited technique for drawing micro- to nanoscale fibers, but current methods of building electrospun fibers in 3D are restrictive in terms of printed height, design of macroscopic fiber networks, and choice of polymer. Here, we combine low-voltage electrospinning and additive manufacturing as a method to pattern layers of suspended mesofibers. Layers of fibers are suspended between 3D-printed supports in situ in multiple fiber layers and designable orientations. We examine the key working parameters to attain a threshold for fiber suspension, use those behavioral observations to establish a "fiber suspension indicator", and demonstrate its utility through design of intricate suspended fiber architectures. Individual fibers produced by this method approach the micrometer/submicrometer scale, while the overall suspended 3D fiber architecture can span over a centimeter in height. We demonstrate an application of suspended fiber architectures in 3D cell culture, utilizing patterned fiber topography to guide the assembly of suspended high-cellular-density structures. The solution-based fiber suspension patterning process we report offers a unique competence in patterning soft polymers, including extracellular matrix-like materials, in a high resolution and aspect ratio. The platform could thus offer new design and manufacturing capabilities of devices and functional products by incorporating functional fibrous elements.

9.
Sci Rep ; 8(1): 12480, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127372

RESUMO

With the push to reduce in vivo approaches, the demand for microphysiological models that recapitulate the in vivo settings in vitro is dramatically increasing. Here, we present an extracellular matrix-integrated microfluidic chip with a rounded microvessel of ~100 µm in diameter. Our system displays favorable characteristics for broad user adaptation: simplified procedure for vessel creation, minimised use of reagents and cells, and the ability to couple live-cell imaging and image analysis to study dynamics of cell-microenvironment interactions in 3D. Using this platform, the dynamic process of single breast cancer cells (LM2-4175) exiting the vessel lumen into the surrounding extracellular matrix was tracked. Here, we show that the presence of endothelial lining significantly reduced the cancer exit events over the 15-hour imaging period: there were either no cancer cells exiting, or the fraction of spontaneous exits was positively correlated with the number of cancer cells in proximity to the endothelial barrier. The capability to map the z-position of individual cancer cells within a 3D vessel lumen enabled us to observe cancer cell transmigration 'hot spot' dynamically. We also suggest the variations in the microvessel qualities may lead to the two distinct types of cancer transmigration behaviour. Our findings provide a tractable in vitro model applicable to other areas of microvascular research.


Assuntos
Células Endoteliais/patologia , Microvasos/patologia , Migração Transendotelial e Transepitelial/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Microfluídica/métodos , Microambiente Tumoral/fisiologia
10.
Oncotarget ; 7(15): 20621-35, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26967393

RESUMO

In glioma, microglia and macrophages are the largest population of tumor-infiltrating cells, referred to as glioma associated macrophages (GAMs). Herein, we sought to determine the role of Suppressor of Cytokine Signaling 3 (SOCS3), a negative regulator of Signal Transducer and Activator of Transcription 3 (STAT3), in GAM functionality in glioma. We utilized a conditional model in which SOCS3 deletion is restricted to the myeloid cell population. We found that SOCS3-deficient bone marrow-derived macrophages display enhanced and prolonged expression of pro-inflammatory M1 cytokines when exposed to glioma tumor cell conditioned medium in vitro. Moreover, we found that deletion of SOCS3 in the myeloid cell population delays intracranial tumor growth and increases survival of mice bearing orthotopic glioma tumors in vivo. Although intracranial tumors from mice with SOCS3-deficient myeloid cells appear histologically similar to control mice, we observed that loss of SOCS3 in myeloid cells results in decreased M2 polarized macrophage infiltration in the tumors. Furthermore, loss of SOCS3 in myeloid cells results in increased CD8+ T-cell and decreased regulatory T-cell infiltration in the tumors. These findings demonstrate a beneficial effect of M1 polarized macrophages on suppressing glioma tumor growth, and highlight the importance of immune cells in the tumor microenvironment.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células Mieloides/patologia , Proteína 3 Supressora da Sinalização de Citocinas/fisiologia , Linfócitos T Reguladores/patologia , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Proliferação de Células , Glioma/genética , Glioma/imunologia , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia
11.
Oncotarget ; 6(19): 17805-16, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26164206

RESUMO

Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in >72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , MicroRNAs/genética , Transdução de Sinais/genética , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Imunofluorescência , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Camundongos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa