Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(6): 1143-1154, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36585238

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is the third most diagnosed cancer, and requires surgical resection and reconnection, or anastomosis, of the remaining bowel to re-establish intestinal continuity. Anastomotic leak (AL) is a major complication that increases mortality and cancer recurrence. Our objective is to assess the causal role of gut microbiota in anastomotic healing. DESIGN: The causal role of gut microbiota was assessed in a murine AL model receiving faecal microbiota transplantation (FMT) from patients with CRC collected before surgery and who later developed or not, AL. Anastomotic healing and gut barrier integrity were assessed after surgery. Bacterial candidates implicated in anastomotic healing were identified using 16S rRNA gene sequencing and were isolated from faecal samples to be tested both in vitro and in vivo. RESULTS: Mice receiving FMT from patients that developed AL displayed poor anastomotic healing. Profiling of gut microbiota of patients and mice after FMT revealed correlations between healing parameters and the relative abundance of Alistipes onderdonkii and Parabacteroides goldsteinii. Oral supplementation with A. onderdonkii resulted in a higher rate of leaks in mice, while gavage with P. goldsteinii improved healing by exerting an anti-inflammatory effect. Patients with AL and mice receiving FMT from AL patients presented upregulation of mucosal MIP-1α, MIP-2, MCP-1 and IL-17A/F before surgery. Retrospective analysis revealed that patients with AL present higher circulating neutrophil and monocyte counts before surgery. CONCLUSION: Gut microbiota plays an important role in surgical colonic healing in patients with CRC. The impact of these findings may extend to a vast array of invasive gastrointestinal procedures.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Citocinas , Microbioma Gastrointestinal/fisiologia , Estudos Retrospectivos , RNA Ribossômico 16S , Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/microbiologia , Neoplasias Colorretais/cirurgia
2.
Clin Cancer Res ; 30(3): 616-628, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010363

RESUMO

PURPOSE: Anastomotic leak (AL) is a major complication in colorectal cancer surgery and consists of the leakage of intestinal content through a poorly healed colonic wound. Colorectal cancer recurrence after surgery is a major determinant of survival. We hypothesize that AL may allow cancer cells to escape the gut and lead to cancer recurrence and that improving anastomotic healing may prevent local implantation and metastatic dissemination of cancer cells. EXPERIMENTAL DESIGN: We investigated the association between AL and postoperative outcomes in patients with colorectal cancer. Using mouse models of poor anastomotic healing, we assessed the processes of local implantation and dissemination of cancer cells. The effect of dietary supplementation with inulin and 5-aminosalicylate (5-ASA), which activate PPAR-γ in the gut, on local anastomotic tumors was assessed in mice undergoing colonic surgery. Inulin and 5-ASA were also assessed in a mouse model of liver metastasis. RESULTS: Patients experiencing AL displayed lower overall and oncologic survival than non-AL patients. Poor anastomotic healing in mice led to larger anastomotic and peritoneal tumors. The microbiota of patients with AL displays a lower capacity to activate the antineoplastic PPAR-γ in the gut. Modulation of gut microbiota using dietary inulin and 5-ASA reinforced the gut barrier and prevented anastomotic tumors and metastatic spread in mice. CONCLUSIONS: Our findings reinforce the hypothesis that preventing AL is paramount to improving oncologic outcomes after colorectal cancer surgery. Furthermore, they pave the way toward dietary targeting of PPAR-γ as a novel way to enhance healing and diminish cancer recurrence.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Fístula Anastomótica/etiologia , Fístula Anastomótica/prevenção & controle , Inulina , Receptores Ativados por Proliferador de Peroxissomo , Fatores de Risco , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Colorretais/patologia
3.
Cancer Res Commun ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934090

RESUMO

Escherichia coli that harbor the polyketide synthase (pks) genomic island produce colibactin and are associated with sporadic colorectal cancer development (CRC). Given the considerable prevalence of pks+ bacteria in healthy individuals, we sought to identify strategies to limit the growth and expansion of pks+ E. coli. We found that culture supernatants of the probiotic strain E. coli Nissle 1917 were able to inhibit the growth of the murine pathogenic strain pks+ E. coli NC101 (EcNC101). We performed a non-targeted analysis of the metabolome in supernatants from several E. coli strains and identified putrescine as a potential postbiotic capable of suppressing EcNC101 growth in vitro. The effect of putrescine supplementation was then evaluated in the azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of CRC in mice colonized with EcNC101. Putrescine supplementation inhibited the growth of pks+ E. coli; reduced the number and size of colonic tumors; and downmodulated the release of inflammatory cytokines in the colonic lumen. Additionally, putrescine supplementation led to shifts in the composition and function of gut microbiota, characterized by an increase of the Firmicutes/Bacteroidetes ratio and enhanced acetate production. The effect of putrescine was further confirmed in vitro using a pks+ E. coli strain isolated from a CRC patient. These results suggest that probiotic-derived metabolites can be used as an alternative to live bacteria in individuals at risk of developing CRC due to the presence of pks+ bacteria in their colon.

4.
J Vis Exp ; (189)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468715

RESUMO

Gut barrier integrity is a hallmark of intestinal health. While gut barrier integrity can be assessed using indirect markers such as the measurement of plasma inflammatory markers and bacterial translocation to the spleen and lymph nodes, the gold standard directly quantifies the ability of selected molecules to traverse the gut mucosal layer toward systemic circulation. This article uses a non-invasive, cost-effective, and low-burden technique to quantify and follow in real time the intestinal permeability in mice using fluorescein-isothiocyanate-labeled dextran (FITC-dextran). Prior to oral supplementation with FITC-dextran, the mice are fasted. They are then gavaged with FITC-dextran diluted in phosphate-buffered saline (PBS). One hour after the gavage, the mice are subjected to general anesthesia using isoflurane, and the in vivo fluorescence is visualized in an imaging chamber. This technique aims to assess residual fluorescence in the abdominal cavity and the hepatic uptake, which is suggestive of portal migration of the fluorescent probe. Blood and stool samples are collected 4 h after oral gavage, and the mice are sacrificed. Plasma and fecal samples diluted in PBS are then plated, and the fluorescence is recorded. The concentration of FITC-dextran is then calculated using a standard curve. In previous research, in vivo imaging has shown that fluorescence rapidly spreads to the liver in mice with a weaker gut barrier induced by a low-fiber diet, while in mice supplemented with fiber to strengthen the gut barrier, the fluorescent signal is retained mostly in the gastrointestinal tract. In addition, in this study, control mice had elevated plasma fluorescence and reduced fluorescence in the stool, while inversely, inulin-supplemented mice had higher levels of fluorescence signals in the gut and low levels in the plasma. In summary, this protocol provides qualitative and quantitative measurements of intestinal permeability as a marker for gut health.


Assuntos
Dextranos , Corantes Fluorescentes , Camundongos , Animais , Fluoresceína-5-Isotiocianato , Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa