RESUMO
The novel A-YAS assay for the detection of androgenic activity in liquid samples such as urine has been developed and assessed. The assay is based on transgenic Arxula adeninivorans yeast cells as the bio-component. The cells were engineered to co-express the human androgen receptor (hAR) gene and the inducible phytase reporter gene (phyK, derived from Klebsiella sp. ASR1), under the control of an Arxula derived glucoamylase (GAA) promoter, which had been modified by the insertion of hormone-responsive elements (HREs). The Arxula transformation/expression platform Xplor®2 was used to select stable mitotic resistance marker free transformants and the most suitable cells were characterized for performance as a sensor bio-component. The assay is easy-to-use, fast (6-25 h) and is currently the most sensitive yeast-based androgen screen with an EC50, limit of detection and of quantification values for 5α-dihydrotestosterone (DHT) of 277.1±53.0, 56.5±4.1 and 76.5±6.7 ng L(-1), respectively. Furthermore, the assay allows the determination of androgenic and anti-androgenic activity of various compounds such as naturally occurring androgens and estrogens, pharmaceuticals and biocides. The robustness of the A-YAS assay enables it to be used for analysis of complex samples such as urine. The results of the analysis of a number of cattle urine samples achieved by the A-YAS assay correlate well with GC-MS analysis of the same samples.
Assuntos
Antagonistas de Androgênios/urina , Androgênios/urina , Bioensaio/métodos , Antagonistas de Androgênios/análise , Androgênios/análise , Animais , Bovinos , Cromatografia Gasosa-Espectrometria de MassasRESUMO
A novel Arxula adeninivorans yeast estrogen screen (nAES) assay has been developed for detection of estrogenic activity in various liquid samples such as wastewater, seawater, brackish water and swine urine. Two bio-components were engineered to co-express the human estrogen receptor α (hERα) and an inducible reporter gene; either the non-conventional phytase gene (phyK, derived from Klebsiella sp. ASR1) or the non-conventional tannase gene (ATAN1, derived from Arxula). Both reporters were put under the control of an Arxula derived glucoamylase (GAA) promoter, which was modified by the insertion of two estrogen-responsive elements (EREs). The Arxula transformation/expression platform Xplor® 2, which lacks resistance markers and E. coli elements, was used to select stable mitotic transformants. They were then analyzed for robustness and suitability as the bio-component for the nAES assay. Two types of the nAES assay based on the reporter proteins phytase and tannase (nAES-P, nAES-T) were used in this work. The nAES-P type is more suitable for the analysis of seawater, brackish water and urine whereas the nAES-T type exhibited higher robustness to NaCl. Both assay types have similar characteristics for the determination of estrogen in sewage and urine samples e.g. 6-25 h assay period with detection and determination limits and EC(50) values for 17ß-estradiol of 2.8 ng L(-1), 5.9 ng L(-1), 33.2 ng L(-1) (nAES-P) and 3.1 ng L(-1), 6.7 ng L(-1) and 39.4 ng L(-1) (nAES-T). Substrate specificity and analytical measurement range (AMR) for both assay types are also similar. These characteristics show that the nAES assay based on non-conventional salt tolerant yeast is applicable for a high throughput estrogen analysis in the environmental and regulatory control sectors.