Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 453: 50-4, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613258

RESUMO

A new radioiodinated photoaffinity compound, [(125)I]YE(Bpa)WSLAAPQRFNH2, derived from a peptide present in the rat neuropeptide FF (NPFF) precursor was synthesized, and its binding characteristics were investigated on a neuroblastoma clone, SH-SY5Y, stably expressing rat NPFF2 receptors tagged with the T7 epitope. The binding of the probe was saturable and revealed a high-affinity interaction (KD=0.24nM) with a single class of binding sites. It was also able to affinity label NPFF2 receptor in a specific and efficient manner given that 38% of the bound radioligand at saturating concentration formed a wash-resistant binding after ultraviolet (UV) irradiation. Photoaffinity labeling with [(125)I]YE(Bpa)WSLAAPQRFamide showed two molecular forms of NPFF2 receptor with apparent molecular weights of 140 and 95kDa in a 2:1 ratio. The comparison of the results between photoaffinity labeling and Western blot analysis suggests that all receptor forms bind the probe irreversibly with the same efficiency. On membranes of mouse olfactory bulb, only the high molecular weight form of NPFF2 receptor is observed. [(125)I]YE(Bpa)WSLAAPQRFamide is an excellent radioiodinated peptidic ligand for direct and selective labeling of NPFF2 receptors in vitro.


Assuntos
Marcadores de Afinidade/química , Oligopeptídeos/química , Fenilalanina/análogos & derivados , Ensaio Radioligante/métodos , Receptores de Neuropeptídeos/análise , Marcadores de Afinidade/síntese química , Sequência de Aminoácidos , Animais , Humanos , Radioisótopos do Iodo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Neuroblastoma/metabolismo , Bulbo Olfatório/metabolismo , Oligopeptídeos/análise , Fenilalanina/química , Fotólise , Ratos , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Células Tumorais Cultivadas
2.
Oncogene ; 24(33): 5165-72, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15897881

RESUMO

Rad51 protein plays an essential role in recombination repair of DNA double-strand breaks and DNA crosslinking adducts. It is part of complexes which can vary with the stage of the cell cycle and the nature of the DNA lesions. During a search for Rad51-associated proteins in CHO nuclear extracts of S-phase cells by mass spectrometry of proteins immunoprecipitated with Rad51 antibodies, we identified a centrosomal protein, gamma-tubulin. This association was confirmed by the reverse immunoprecipitation with gamma-tubulin antibodies. Both proteins copurified from HeLa cells nuclear extracts following a tandem affinity purification of double-tagged Rad51. Immunofluorescence analysis showed colocalization of both Rad51 and gamma-tubulin in discrete foci in mammalian cell nuclei. The number of colocalized foci and their overlapping area increased in the presence of DNA damage produced by genotoxic treatments either during S phase or in exponentially growing cells. These variations did not result from an overall stress because microtubule cytoskeleton poisons devoid of direct interactions with DNA, such as taxol or colcemid, did not lead to an increase of this association. The recruitment of Rad51 and gamma-tubulin in the same nuclear complex suggests a link between DNA recombination repair and the centrosome function during the cell cycle.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células CHO , Ciclo Celular , Cricetinae , Cricetulus , Reparo do DNA/fisiologia , Células HeLa , Humanos , Imunoprecipitação , Complexos Multiproteicos/metabolismo , Rad51 Recombinase , Fase S/fisiologia
3.
Oncogene ; 21(33): 5188-92, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12140769

RESUMO

The BRCA2 tumor suppressor has been implicated in the maintenance of genomic integrity through a function in cellular responses to DNA damage. The BRCA2 protein directly associates with Rad51, that is essential for repair of double-strand breaks (DSBs) by homologous recombination (HR). In this report, we study the BRCA2-defective Chinese hamster cell mutant V-C8 for its ability to perform homology-directed repair (HDR) between repeated sequences. V-C8 cells were recently shown to be defective in Rad51 foci formation in response to DNA damage. Strikingly, we find that these BRCA2 mutant cells exhibit a strong stimulation of HDR activity compared to the V79 parental cells, which harbor a wild-type BRCA2. Furthermore, molecular characterization of the HDR products shows that loss of BRCA2 in V-C8 cells leads to significant reduction in Rad51-dependent gene conversion but strong enhancement of Rad51-independent single-strand annealing (SSA) events frequency. These data imply that, when HDR by conservative gene conversion is impaired, DSBs usually repaired by this pathway are instead resolved by other non-conservative HDR subpathways. Therefore, high chromosomal instability in BRCA2-deficient cells presumably results from enhancement of error-prone repair mechanisms, such as SSA.


Assuntos
Proteína BRCA2/deficiência , Proteína BRCA2/metabolismo , Recombinação Genética/genética , Animais , Proteína BRCA2/genética , Células CHO , Clonagem Molecular , Cricetinae , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos/genética , Conversão Gênica/genética , Gentamicinas/farmacologia , Mutação/genética , Rad51 Recombinase
4.
Biol Cell ; 96(7): 545-52, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15380621

RESUMO

DNA interstrand cross-links (ICL)-inducing agents such as cisplatin, mitomycin C (MMC) and nitrogen mustards are widely used as potent antitumor drugs. Although ICL repair mechanism is not yet well characterized in mammalian cells, this pathway is thought to involve a sequential action of nucleotide excision repair (NER) and homologous recombination (HR). The importance of unraveling ICL repair pathways is highlighted by the hypersensitivity to ICL-inducing agents in cells of patients with the genetic disease Fanconi anemia (FA) and in cells mutated in the Breast Cancer susceptibility genes BRCA1 and BRCA2. To better characterize the involvement of HR in the sensitivity to ICL-inducing agents, we examined spontaneous and ICL-induced HR in rodent FA-like V-H4 cells. In this report, we show that MMC-hypersensitive V-H4 cells exhibit an increased spontaneous homology-directed repair (HDR) activity compared to the resistant V79 parental cells. Elevated HDR activity results mainly in increased conservative Rad51-dependent recombination, without affecting non-conservative single-strand annealing process (SSA). We also show that HDR activity is enhanced following MMC treatment in parental cells, but not in rodent FA-like V-H4 cells. Moreover, our data indicate that Rad51 foci formation is significantly delayed in these FA-like cells in response to crosslinking agent. These findings provide evidence for an impairment of HR control in V-H4 cells and emphasize the involvement of the FA pathway in HR-mediated repair.


Assuntos
Reparo do DNA , Anemia de Fanconi/genética , Recombinação Genética , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular , Cricetinae , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Mutação , Rad51 Recombinase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa