Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Molecules ; 29(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064879

RESUMO

The purpose of this review is to present advances and applications of 33S NMR, which is an underutilized NMR spectroscopy. Experimental NMR aspects in solution, chemical shift tendencies, and quadrupolar relaxation parameters will be briefly summarized. Emphasis will be given to advances and applications in the emerging fields of solid-state and DFT computations of 33S NMR parameters. The majority of the examples were taken from the last twenty years and were selected on the basis of their importance to provide structural, electronic, and dynamic information that is difficult to obtain by other techniques.

2.
Molecules ; 28(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630396

RESUMO

Molecular structures, in chloroform and DMSO solution, of the free fatty acids (FFAs) caproleic acid, oleic acid, α-linolenic acid, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) are reported with the combined use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the COOH protons, transient 1D NOE experiments and DFT calculations demonstrate the major contribution of low molecular weight aggregates of dimerized fatty acids through intermolecular hydrogen bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures even at the low concentration of 20 mM in CDCl3. For the dimeric DHA, a structural model of an intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of one molecule and the ω-3 double bond of a second molecule is shown to play a role. In DMSO-d6 solution, NMR and DFT studies show that the carboxylic groups form strong intermolecular hydrogen bond interactions with a single discrete solvation molecule of DMSO. These solvation species form parallel and antiparallel interdigitated structures of low molecular weight, as in chloroform solution. This structural motif, therefore, is an intrinsic property of the FFAs, which is not strongly affected by the length and degree of unsaturation of the chain and the hydrogen bond ability of the solvent.

3.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175134

RESUMO

Medium- and long-chain saturated and unsaturated free fatty acids (FFAs) are known to bind to human serum albumin (HSA), the main plasma carrier protein. Atomic-level structural data regarding the binding mode in Sudlow's sites I (FA7) and II (FA4, FA3) of the polyunsaturated ω-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), however, are largely unknown. Herein, we report the combined use of saturation transfer difference (STD) and Interligand NOEs for Pharmacophore Mapping (INPHARMA) NMR techniques and molecular docking calculations to investigate the binding mode of DHA and EPA in Sudlow's sites Ι and ΙΙ of HSA. The docking calculations and the significant number of interligand NOEs between DHA and EPA and the drugs warfarin and ibuprofen, which are stereotypical ligands for Sudlow's sites I and II, respectively, were interpreted in terms of competitive binding modes and the presence of two orientations of DHA and EPA at the binding sites FA7 and FA4. The exceptional flexibility of the long-chain DHA and EPA and the formation of strongly folded structural motives are the key properties of HSA-PUFA complexes.


Assuntos
Ácido Eicosapentaenoico , Albumina Sérica Humana , Humanos , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos , Simulação de Acoplamento Molecular , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Ácidos Graxos Insaturados/metabolismo
4.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138481

RESUMO

Saturation transfer difference (STD), inter-ligand NOEs (INPHARMA NMR), and docking calculations are reported for investigating specific binding sites of the high-affinity synthetic 7-nitrobenz-2-oxa-1,3-diazoyl-4-C12 fatty acid (NBD-C12 FA) with non-labeled human serum albumin (HSA) and in competition with the drugs warfarin and ibuprofen. A limited number of negative interligand NOEs between NBD-C12 FA and warfarin were interpreted in terms of a short-range allosteric competitive binding in the wide Sudlow's binding site II (FA7) of NBD-C12 FA with Ser-202, Lys-199, and Trp-214 and warfarin with Arg-218 and Arg-222. In contrast, the significant number of interligand NOEs between NBD-C12 FA and ibuprofen were interpreted in terms of a competitive binding mode in Sudlow's binding site I (FA3 and FA4) with Ser-342, Arg-348, Arg-485, Arg-410, and Tyr-411. NBD-C12 FA has the unique structural properties, compared to short-, medium-, and long-chain saturated and unsaturated natural free fatty acids, of interacting with well-defined structures with amino acids of both the internal and external polar anchor sites in Sudlow's binding site I and with amino acids in both FA3 and FA4 in Sudlow's binding site II. The NBD-C12 FA, therefore, interacts with novel structural characteristics in the drug binding sites I and II and can be regarded as a prototype molecule for drug development.


Assuntos
Ácidos Graxos não Esterificados , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica/química , Ibuprofeno , Ligação Proteica , Varfarina , Sítios de Ligação , Ácidos Graxos/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/metabolismo
5.
Magn Reson Chem ; 60(10): 970-984, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35830967

RESUMO

Density functional theory (DFT) calculations of δ(13 C) and δ(1 H) chemical shifts and 3 J(13 COO1 H) coupling constants of three model hydroperoxides of the naturally occurring cis-11-OOH and trans-9-OOH isomers of oleate and 9-cis, 11-trans-16-OOH endo hydroperoxide of methyl linolenate are reported. The computational δ(OOH) for various functionals and basis sets were found to be nearly identical for the cis/trans geometric isomers. The chemical shifts of the methine CHOOH protons and carbons, on the contrary, are highly diagnostic for the identification of cis/trans geometric isomerism. The chemical shifts of the olefinic protons and carbons strongly depend on the orientation of the hydroperoxide unit relative to the double bond and, thus, of importance in conformational analysis. The results are in very good agreement with the available experimental data. For the various diastereomeric pairs of the model endo-hydroperoxide, the strongly deshielded OOH resonances, due to the presence of an intramolecular hydrogen bond between the hydroperoxide proton and an oxygen of the endo-peroxide ring, along with the δ(CHOOH), are highly diagnostic for identification and structure elucidation of complex erythro- and threo- diastereomeric pairs of endo-hydroperoxides; the computational results are in very good agreement with the available experimental data. The 3 J(13 COO1 H) coupling constants were found to be < 2  Hz for the cis-trans geometric models and < 0.5  Hz for the endo-hydroperoxide and, thus, unimportant in stereochemical analysis. Sharp resonances of the hydroperoxide protons, with Δν1/2 < 3 Hz, are required for the successful implementation of the 1 H13 C heteronuclear multiple bond correlation (HMBC) technique.


Assuntos
Peróxido de Hidrogênio , Prótons , Carbono , Teoria da Densidade Funcional , Ligação de Hidrogênio , Conformação Molecular
6.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408537

RESUMO

Mono- and polyunsaturated lipids are particularly susceptible to peroxidation, which results in the formation of lipid hydroperoxides (LOOHs) as primary nonradical-reaction products. LOOHs may undergo degradation to various products that have been implicated in vital biological reactions, and thus in the pathogenesis of various diseases. The structure elucidation and qualitative and quantitative analysis of lipid hydroperoxides are therefore of great importance. The objectives of the present review are to provide a critical analysis of various methods that have been widely applied, and more specifically on volumetric methods, applications of UV-visible, infrared, Raman/surface-enhanced Raman, fluorescence and chemiluminescence spectroscopies, chromatographic methods, hyphenated MS techniques, NMR and chromatographic methods, NMR spectroscopy in mixture analysis, structural investigations based on quantum chemical calculations of NMR parameters, applications in living cells, and metabolomics. Emphasis will be given to analytical and structural methods that can contribute significantly to the molecular basis of the chemical process involved in the formation of lipid hydroperoxides without the need for the isolation of the individual components. Furthermore, future developments in the field will be discussed.


Assuntos
Peróxidos Lipídicos , Metabolômica , Peroxidação de Lipídeos , Espectroscopia de Ressonância Magnética/métodos
7.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144648

RESUMO

Artemisinin is known to bind to the main plasma protein carrier serum albumin (SA); however, there are no atomic level structural data regarding its binding mode with serum albumin. Herein, we employed a combined strategy of saturation transfer difference (STD), transfer nuclear Overhauser effect spectroscopy (TR-NOESY), STD-total correlation spectroscopy (STD-TOCSY), and Interligand Noes for PHArmacophore Mapping (INPHARMA) NMR methods and molecular docking calculations to investigate the structural basis of the interaction of artemisinin with human and bovine serum albumin (HSA/BSA). A significant number of inter-ligand NOEs between artemisinin and the drugs warfarin and ibuprofen as well as docking calculations were interpreted in terms of competitive binding modes of artemisinin in the warfarin (FA7) and ibuprofen (FA4) binding sites. STD NMR experiments demonstrate that artemisinin is the main analyte for the interaction of the A. annua extract with BSA. The combined strategy of NMR and docking calculations of the present work could be of general interest in the identification of the molecular basis of the interactions of natural products with their receptors even within a complex crude extract.


Assuntos
Artemisininas , Produtos Biológicos , Sítios de Ligação , Misturas Complexas , Humanos , Ibuprofeno , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Albumina Sérica Humana/metabolismo , Varfarina
8.
Phys Chem Chem Phys ; 23(29): 15645-15658, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34268541

RESUMO

NMR and DFT studies of phenol compounds as molecular sensors were carried out to investigate H2O/DMSO eutectic mixtures at a molecular level. The experimental 1H NMR chemical shifts of the OH groups, δexp(OH), of phenol, paracoumaric acid, and vanillic acid show maximum deshielding and, thus, hydrogen bond interactions in the range of mole fractions 0.20 < χ(DMSO) < 0.33. In the mole fractions χ(DMSO) < 0.2, a progressive decrease in δexp(OH) was observed which demonstrates a decrease in hydrogen bond interactions at infinite dilution in H2O, despite the increase in the number of available hydrogen bond acceptor and donor sites. DFT calculated δcalc(OH) of minimum energy solvation clusters were shown to be in reasonable agreement with the pattern in experimental δexp(OH) data. The chemical shift deshielding and, thus, increased hydrogen bond interactions in the natural product + DMSO + nH2O (n = 2, 3) solvation clusters, relative to complexes in DMSO or H2O solutions, cannot be attributed to a single structural parameter of the cooperative interactions between H2O and DMSO molecules with the phenol OH groups of the natural products. The minimum energy conformers of phenol compounds + 2H2O + DMSO complexes are in excellent agreement with a recent low temperature neutron diffraction experiment of 3D2O + DMSO and demonstrate a general structural motif of solvation complexes. The combined use of 1H NMR and DFT studies with emphasis on δ(OH) of phenol compounds, as molecular sensors, can provide an effective method for the study of solute-solvent interactions at the atomic level.

9.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502555

RESUMO

The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 µM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.


Assuntos
Proteínas de Bactérias/genética , Dioxigenases/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Micrococcaceae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Biocatálise , Dioxigenases/química , Dioxigenases/metabolismo , Ácido Gálico/química , Ácido Gálico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Micrococcaceae/enzimologia , Estrutura Molecular , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Estereoisomerismo , Especificidade por Substrato
10.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200468

RESUMO

A DFT study of the 1H NMR chemical shifts, δ(1H), of geometric isomers of 18:3 conjugated linolenic acids (CLnAs), hexadecatrienyl pheromones, and model triene-containing compounds is presented, using standard functionals (B3LYP and PBE0) as well as corrections for dispersion interactions (B3LYP-D3, APFD, M06-2X and ωB97XD). The results are compared with literature experimental δ(1H) data in solution. The closely spaced "inside" olefinic protons are significantly more deshielded due to short-range through-space H…H steric interactions and appear close to or even beyond δ-values of aromatic systems. Several regularities of the computational δ(1H) of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest-energy DFT-optimized single conformer for all functionals used and are in very good agreement with experimental δ(1H) in solution. Examples are provided of literature studies in which experimental resonance assignments deviate significantly from DFT predictions and, thus, should be revised. We conclude that DFT calculations of 1H chemical shifts of trienyl compounds are powerful tools (i) for the accurate prediction of δ(1H) even with less demanding functionals and basis sets; (ii) for the unequivocal identification of geometric isomerism of conjugated trienyl systems that occur in nature; (iii) for tackling complex problems of experimental resonance assignments due to extensive signal overlap; and (iv) for structure elucidation in solution.

11.
Magn Reson Chem ; 58(3): 232-244, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733071

RESUMO

Artemisia annua is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone. The ability to determine artemisinin and its known analogs in plant extracts is an especially difficult task because the compounds are present in low concentrations, are thermolabile, and lack ultraviolet or fluorescent chromophores. We report herein a facile and rapid 1-D 1 H, 1-D total correlation spectroscopy, 2-D 1 H-13 C heteronuclear single quantum coherence, and 1 H-13 C heteronuclear multiple bond correlation nuclear magnetic resonance techniques for the simultaneous identification and quantification of artemisinin and five of its analogs along with five flavonoids, an aromatic ketone, and camphor (in total, 13 compounds) in crude diethyl ether A. annua extract without the need of laborious isolation of the individual analytes. The above method was validated in terms of precision, linearity, and limit of detection. The analytical results were found to be in excellent agreement with those obtained with the use of the time consuming high-performance liquid chromatography with diode-array detection and liquid chromatography with tandem mass spectrometry for the compounds that standards were available.


Assuntos
Antimaláricos/química , Artemisia annua/química , Artemisininas/análise , Flavonoides/análise , Extratos Vegetais/química , Cânfora/química , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos/métodos , Cetonas/química , Limite de Detecção , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
12.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113947

RESUMO

A combination of selective 1D Total Correlation Spectroscopy (TOCSY) and 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR techniques has been employed for the identification of methyl linolenate primary oxidation products without the need for laborious isolation of the individual compounds. Complex hydroperoxides and diastereomeric endo-hydroperoxides were identified and quantified. Strongly deshielded C-O-O-H 1H-NMR resonances of diastereomeric endo-hydroperoxides in the region of 8.8 to 9.6 ppm were shown to be due to intramolecular hydrogen bonding interactions of the hydroperoxide proton with an oxygen atom of the five-member endo-peroxide ring. These strongly deshielded resonances were utilized as a new method to derive, for the first time, three-dimensional structures with an assignment of pairs of diastereomers in solution with the combined use of 1H-NMR chemical shifts, Density Functional Theory (DFT), and Our N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) calculations.


Assuntos
Ácidos Graxos/química , Peróxido de Hidrogênio/química , Ácidos Linolênicos/química , Espectroscopia de Ressonância Magnética , Teoria da Densidade Funcional , Modelos Moleculares , Conformação Molecular , Soluções , Estereoisomerismo
13.
Molecules ; 25(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796664

RESUMO

A density functional theory (DFT) study of the 1H- and 13C-NMR chemical shifts of the geometric isomers of 18:2 ω-7 conjugated linoleic acid (CLA) and nine model compounds is presented, using five functionals and two basis sets. The results are compared with available experimental data from solution high resolution nuclear magnetic resonance (NMR). The experimental 1H chemical shifts exhibit highly diagnostic resonances due to the olefinic protons of the conjugated double bonds. The "inside" olefinic protons of the conjugated double bonds are deshielded than those of the "outside" protons. Furthermore, in the cis/trans isomers, the signals of the cis bonds are more deshielded than those of the trans bonds. These regularities of the experimental 1H chemical shifts of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest energy DFT optimized single conformer, for all functionals and basis sets used. The other low energy conformers have negligible effects on the computational 1H-NMR chemical shifts. We conclude that proton NMR chemical shifts are more discriminating than carbon, and DFT calculations can provide a valuable tool for (i) the accurate prediction of 1H-NMR chemical shifts even with less demanding functionals and basis sets; (ii) the unequivocal identification of geometric isomerism of CLAs that occur in nature, and (iii) to derive high resolution structures in solution.


Assuntos
Isótopos de Carbono/análise , Teoria da Densidade Funcional , Ácidos Linoleicos Conjugados/química , Espectroscopia de Ressonância Magnética/métodos , Prótons , Estereoisomerismo
14.
Magn Reson Chem ; 57(4): S69-S74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702165

RESUMO

The radical-dependent oxidation of unsaturated fatty acids is a fundamental reaction in lipid chemistry, biochemistry, and technology. We report herein the first successful application of 1 H-13 C HMBC NMR experiment for the identification and quantification of complex and minor (3.9% to 0.85%) components of cis and trans primary hydroperoxide isomers of oxidized oleate and linoleate methyl esters in solution, without the need of laborious isolation of the individual components.

15.
Molecules ; 24(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226776

RESUMO

Detailed solvent and temperature effects on the experimental 1H-NMR chemical shifts of the natural products chrysophanol (1), emodin (2), and physcion (3) are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.1 ppb/K were observed in DMSO-d6, acetone-d6 and CDCl3 for the C(1)-OH and C(8)-OH groups which demonstrate that they are involved in a strong intramolecular hydrogen bond. On the contrary, large chemical shift differences of 5.23 ppm at 298 K and Δδ/ΔΤ values in the range of -5.3 to -19.1 ppb/K between DMSO-d6 and CDCl3 were observed for the C(3)-OH group which demonstrate that the solvation state of the hydroxyl proton is a key factor in determining the value of the chemical shift. DFT calculated 1H-NMR chemical shifts, using various functionals and basis sets, the conductor-like polarizable continuum model, and discrete solute-solvent hydrogen bond interactions, were found to be in very good agreement with the experimental 1H-NMR chemical shifts even with computationally less demanding level of theory. The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis. When the X-ray structures of chrysophanol (1), emodin (2), and physcion (3) were used as input geometries, the DFT-calculated 1H-NMR chemical shifts were shown to strongly deviate from the experimental chemical shifts and no functional dependence could be obtained. Comparison of the most important intramolecular data of the DFT calculated and the X-ray structures demonstrate significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond O-H and C-H bond lengths which deviate by 0.152 tο 0.132 Å and 0.133 to 0.100 Å, respectively, in the two structural methods. Further differences were observed in the conformation of -OH, -CH3, and -OCH3 substituents.


Assuntos
Produtos Biológicos/química , Soluções/química , Solventes/química , Teoria da Densidade Funcional , Humanos , Hidrogênio/química , Ligação de Hidrogênio , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética
16.
Molecules ; 24(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889921

RESUMO

Origin and quality identification in dairy products is an important issue and also an extremely challenging and complex experimental procedure. The objective of the present work was to compare the metabolite profile of the lipid fraction of organic and conventional bovine milk using NMR metabolomics analysis. ¹H-NMR and 1D TOCSY NMR methods of analysis were performed on extracted lipid fraction of lyophilized milk. For this purpose, 14 organic and 16 conventional retail milk samples were collected monthly, and 64 bulk-tank (58 conventional and 6 organics) milk samples were collected over a 14-month longitudinal study in Cyprus. Data were treated with multivariate methods (PCA, PLS-DA). Minor components were identified and quantified, and modification of the currently used equations is proposed. A significantly increased % content of conjugated (9-cis, 11-trans)18:2 linoleic acid (CLA), α-linolenic acid, linoleic acid, allylic protons and total unsaturated fatty acids (UFA) and decreased % content for caproleic acid were observed in the organic samples compared to the conventional ones. The present work confirms that lipid profile is affected by contrasting management system (organic vs. conventional), and supports the potential of NMR-based metabolomics for the rapid analysis and authentication of the milk from its lipid profile.


Assuntos
Alimentos Orgânicos/análise , Lipídeos/química , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Leite/metabolismo , Animais , Bovinos , Análise Discriminante , Análise dos Mínimos Quadrados , Metaboloma , Leite/química , Valor Nutritivo , Análise de Componente Principal
17.
Molecules ; 24(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480264

RESUMO

The food industry has become interested in the development of innovative biomaterials with antioxidant and antimicrobial properties. Although several biopolymers have been evaluated for food packaging, the use of polyphenolic coatings has been unexplored. The purpose of this work was to develop an antioxidant and antimicrobial coating for food packaging through the polymerization of carob phenolics. At first, the polyphenolic coatings were deposited in glass surfaces polymerizing different concentrations of carob extracts (2 and 4 mg mL-1) at three pH values (7, 8 and 9). Results demonstrated that the coating produced at pH 8 and at a concentration of 4 mg mL-1 had the most potent antioxidant and antimicrobial potential. Then, the coating was applied directly on the salmon fillet (coating) and on the plastic container (active packaging). Peroxide and thiobarbituric acid-reactive substances (TBARS) methods were used to measure the potency to inhibit lipid oxidation in salmon fillets. Furthermore, the anti-Listeria activity of coatings was also assessed. Results showed a significant decrease of lipid oxidation during cold storage of salmon fillets for both treatments; the superiority of applied coating directly on the salmon fillets was also highlighted. Regarding the antimicrobial potency, the polyphenolic coating depleted the growth of Listeria monocytogenes after 10 days storage; while the active packaging had no effect on Listeria monocytogenes. Overall, we describe the use of low-cost carob polyphenols as precursors for the formation of bifunctional coatings with promising applications in food packaging.


Assuntos
Embalagem de Alimentos , Frutas/química , Galactanos/química , Mananas/química , Gomas Vegetais/química , Polifenóis/química , Animais , Antioxidantes/análise , Antioxidantes/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Fenóis/análise , Polifenóis/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Salmão , Alimentos Marinhos
18.
Biochim Biophys Acta Gen Subj ; 1862(1): 1-8, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28974426

RESUMO

BACKGROUND: Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. METHODS: Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. RESULTS: Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. CONCLUSIONS: We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. GENERAL SIGNIFICANSE: This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility.


Assuntos
Reatores Biológicos , Lipase/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Quercetina/farmacologia , Quercetina/farmacocinética , Biotransformação , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase/química , Quercetina/química
19.
Biochim Biophys Acta Gen Subj ; 1862(9): 1913-1924, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886278

RESUMO

BACKGROUND: Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-ß-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-ß-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. METHODS: The quercetin-2HP-ß-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage. RESULTS: Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-ß-CD complex against H2O2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. CONCLUSIONS: We found that in a quercetin-2HP-ß-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. GENERAL SIGNIFICANCE: The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus.


Assuntos
Ciclodextrinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Quercetina/metabolismo , Disponibilidade Biológica , Ciclodextrinas/química , Humanos , Ferro/química , Células Jurkat , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Quercetina/química
20.
Bioinformatics ; 32(17): 2710-2, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27187205

RESUMO

MOTIVATION: Transient S-sulfenylation of cysteine thiols mediated by reactive oxygen species plays a critical role in pathology, physiology and cell signaling. Therefore, discovery of new S-sulfenylated sites in proteins is of great importance towards understanding how protein function is regulated upon redox conditions. RESULTS: We developed PRESS (PRotEin S-Sulfenylation) web server, a server which can effectively predict the cysteine thiols of a protein that could undergo S-sulfenylation under redox conditions. We envisage that this server will boost and facilitate the discovery of new and currently unknown functions of proteins triggered upon redox conditions, signal regulation and transduction, thus uncovering the role of S-sulfenylation in human health and disease. AVAILABILITY AND IMPLEMENTATION: The PRESS web server is freely available at http://press-sulfenylation.cse.uoi.gr/ CONTACTS: agtzakos@gmail.com or gtzortzi@cs.uoi.gr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Simulação por Computador , Cisteína , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína/métodos , Compostos de Sulfidrila , Ácidos de Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa