Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311627, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462958

RESUMO

For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2 S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2 NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2 .

2.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930809

RESUMO

Cobalt(III) compounds with tetradentate ligands have been widely employed to deliver cytotoxic and imaging agents into cells. A large body of work has focused on using cobalt(III)-cyclam scaffolds for this purpose. Here, we investigate the cytotoxic properties of cobalt(III) complexes containing 14-membered macrocycles related to cyclam. A breast cancer stem cell (CSC) in vitro model was used to gauge efficacy. Specifically, [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ (1) and [Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ (2) were synthesised and characterised, and their breast CSC activity was determined. The cobalt(III) complexes 1 and 2 displayed micromolar potency towards bulk breast cancer cells and breast CSCs grown in monolayers. Notably, 1 and 2 displayed selective potency towards breast CSCs over bulk breast cancer cells (up to 4.5-fold), which was similar to salinomycin (an established breast CSC-selective agent). The cobalt(III) complexes 1 and 2 were also able to inhibit mammosphere formation at low micromolar doses (with respect to size and number). The mammopshere inhibitory effect of 2 was similar to that of salinomycin. Our studies show that cobalt(III) complexes with 1,4,7,11-tetraazacyclotetradecane and 1-oxa-4,8,12-triazacyclotetradecane macrocycles could be useful starting points for the development of new cobalt-based delivery systems that can transport cytotoxic and imaging agents into breast CSCs.


Assuntos
Antineoplásicos , Cobalto , Células-Tronco Neoplásicas , Humanos , Cobalto/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Sobrevivência Celular/efeitos dos fármacos
3.
Chemistry ; 29(4): e202202567, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36214647

RESUMO

Dithiolopyrrolones (DTPs), such as holomycin, are natural products that hold promise as scaffolds for antibiotics as they exhibit inhibitory activity against antibiotic-resistant pathogens. They consist of a unique bicyclic core containing a disulfide that is crucial for their biological activity. Herein, we establish the DTPs as prochelators. We show that the disulfides are reduced at cellular gluathione levels. This activates the drugs and initiates interactions with targets, particularly metal coordination. In addition, we report an expedient synthesis for the DTPs thiolutin and aureothricin, providing facile access to important natural DTPs and derivatives thereof.


Assuntos
Antibacterianos , Metais , Antibacterianos/farmacologia , Glutationa , Pirróis/farmacologia , Compostos de Sulfidrila/farmacologia , Dissulfetos
4.
J Org Chem ; 87(24): 16368-16377, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36449039

RESUMO

The tetradentate azamacrocycle cyclam (=1,4,8,11-tetraazacyclotetradecane) was studied profoundly for the coordination of transition metal ions, and the resulting complexes were investigated extensively for their catalytic performance in, e.g., O2 activation and electrocatalytic CO2 reduction. Although the successful synthesis of analogous P4 macrocycles was described earlier, no tetradentate N,P mixed 14-membered macrocycles have been prepared to date and their chemistry remains elusive. Thus, in this work, we showcase the synthesis of phospha-aza mixed cyclam-based macrocycles by selectively "exchanging" one or two secondary amines in the macrocycle isocyclam (=1,4,7,11-tetraazacyclotetradecane) with tertiary phosphines. In addition, we herein present the preparation of the corresponding nickel complexes along with their complex chemical and structural characterization to provide first coordination studies.


Assuntos
Ciclamos , Elementos de Transição , Níquel/química , Fósforo , Modelos Moleculares , Elementos de Transição/química
5.
Angew Chem Int Ed Engl ; 59(26): 10527-10534, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32281187

RESUMO

The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII -corrole complex, which is modified on the three meso-positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2 . Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h-1 , when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII -corrole center.

6.
Chem Commun (Camb) ; 57(23): 2947-2950, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621306

RESUMO

A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.

7.
Nat Commun ; 10(1): 3864, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455766

RESUMO

Electrochemical conversion of CO2 to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the meso-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d8-configurated metal centre, where two electrons occupy and fill up the antibonding dz2 orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO2 to ethanol or methanol of an immobilized cobalt A3-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.

8.
Dalton Trans ; 46(3): 907-917, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009912

RESUMO

Herein, we report on the versatile reactions of CH3C(CH2PPh2)3 as well as CH3Si(CH2PPh2)3 derived Ni-complexes. While Ni[CH3C(CH2PPh2)3] complexes reveal high stability, the Ni[CH3Si(CH2PPh2)3] analogs show rapid decomposition at room temperature and afford the unprecedented pseudo-tetrahedral phosphino methanide complex 5. We provide a detailed electronic structure of 5 from X-ray absorption and emission spectroscopy data analysis in combination with DFT calculations, as well as from comparison with structurally related complexes. A mechanistic study for the formation of complex 5 by reaction with BF4- is presented, based on a comparison of experimental data with quantum chemical calculations. We also show a simple route towards isolable Ni(i)-complexes on the gram scale.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa