Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37238526

RESUMO

Tribo-films form on surfaces as a result of friction and wear. The wear rate is dependent on the frictional processes, which develop within these tribo-films. Physical-chemical processes with negative entropy production enhance reduction in the wear rate. Such processes intensively develop once self-organization with dissipative structure formation is initiated. This process leads to significant wear rate reduction. Self-organization can only occur after the system loses thermodynamic stability. This article investigates the behavior of entropy production that results in the loss of thermodynamic stability in order to establish the prevalence of friction modes required for self-organization. Tribo-films with dissipative structures form on the friction surface as a consequence of a self-organization process, resulting in an overall wear rate reduction. It has been demonstrated that a tribo-system begins to lose its thermodynamic stability once it reaches the point of maximum entropy production during the running-in stage.

2.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499302

RESUMO

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa