Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403054, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073266

RESUMO

Short carbon atomic wires, the prototypes of the lacking carbon allotrope carbyne, represent the fundamental 1D system and the first stage in carbon nanostructure growth, which still exhibits many open points regarding their growth and stability. An in situ UV resonance Raman approach is introduced for real-time monitoring of the growth of carbon atomic wires during pulsed laser ablation in liquid without perturbing the synthesis environment. Single-chain species' growth dynamics are tracked, achieving size selectivity by exploiting the peculiar optoelectronic properties of carbon wires and the tunability of synchrotron radiation. Diverse solvents are systematically explored, finding size- and solvent-dependent production rates linked to the solvent's C/H ratio and carbonization tendency. Carbon atomic wires' growth dynamics reveal a complex interplay between formation and degradation, leading to an equilibrium. Water, lacking in carbon atoms and reduced polyynes solubility, yields fewer wires with rapid saturation. Organic solvents exhibit enhanced productivity and near-linear growth, attributed to additional carbon from solvent dissociation and low relative polarity. Exploring the dynamics of the saturation regime provides new insights into advancing carbon atomic wires synthesis via PLAL. Understanding carbon atomic wires' growth dynamics can contribute to optimizing PLAL processes for nanomaterial synthesis.

2.
Biophys J ; 120(20): 4575-4589, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34474016

RESUMO

Amyloids are proteinaceous deposits considered an underlying pathological hallmark of several degenerative diseases. The mechanism of amyloid formation and its inhibition still represent challenging issues, especially when protein structure cannot be investigated by classical biophysical techniques as for the intrinsically disordered proteins (IDPs). In this view, the need to find an alternative way for providing molecular and structural information regarding IDPs prompted us to set a novel, to our knowledge, approach focused on UV Resonance Raman (UVRR) spectroscopy. To test its applicability, we study the fibrillation of hen-egg white lysozyme (HEWL) and insulin as well as their interaction with resveratrol, employing also intrinsic fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The increasing of the ß-sheet structure content at the end of protein fibrillation probed by FTIR occurs simultaneously with a major solvent exposure of tryptophan (Trp) and tyrosine (Tyr) residues of HEWL and insulin, respectively, as revealed by UVRR and intrinsic fluorescence spectroscopy. However, because the latter technique is successfully used when proteins naturally contain Trp residues, it shows poor performances in the case of insulin, and the information regarding its tertiary structure is exclusively provided by UVRR spectroscopy. The presence of an increased concentration of resveratrol induces mild changes in the secondary structure of both protein fibrils while remodeling HEWL fibril length and promoting the formation of amorphous aggregates in the case of insulin. Although the intrinsic fluorescence spectra of proteins are hidden by resveratrol signal, UVRR Trp and Tyr bands are resonantly enhanced, showing a good sensitivity to the presence of resveratrol and marking a modification in the noncovalent interactions in which they are involved. Our findings demonstrate that UVRR is successfully employed in the study of aggregation-prone proteins and of their interaction with ligands, especially in the case of Trp-lacking proteins.


Assuntos
Galinhas , Proteínas Intrinsicamente Desordenadas , Amiloide , Animais , Feminino , Ligantes , Estrutura Secundária de Proteína
3.
Phys Chem Chem Phys ; 23(30): 15980-15988, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313275

RESUMO

The utility of ionic liquids (ILs) as alternative solvents for stabilizing and preserving the native structure of DNA over the long term may be envisaged for biotechnological and biomedical applications in the near future. The delicate balance between the stabilizing and destabilizing effects of IL-mediated interactions with the structure of DNA is complex and is still not well understood. This work reports a fundamental study dealing with the effect exerted by cations and anions in imidazolium-based ILs on the thermal structural stability of large nucleic acid molecules. Multi-wavelength UV resonance Raman spectroscopy is used for selectively detecting heat-induced structural transitions of DNA localized on specific base tracts. Our study reveals the establishment of preferential interactions between the imidazolium cations of ILs and the guanine bases in the DNA groove that lead to more effective stacking between the guanine bases even at high temperatures. Interestingly, we observe that this trend for ILs sharing the same chloride anion is further enhanced as the alkyl chain on the imidazolium cation gets shorter. The results from the present investigation lead to a more comprehensive view of the IL-mediated interactions with A-T and G-C base pairs during thermal unfolding.


Assuntos
DNA/química , Líquidos Iônicos/química , Sequência de Bases , Guanina/química , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Estrutura Molecular , Transição de Fase , Solventes/química , Análise Espectral Raman , Relação Estrutura-Atividade , Termodinâmica , Temperatura de Transição , Raios Ultravioleta , Água/química
4.
Phys Chem Chem Phys ; 22(15): 8128-8140, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246758

RESUMO

G-Quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of several biological processes of many organisms. The rational design of G4-targeting molecules developed as potential anticancer and antiviral therapeutics is a complex problem intrinsically due to the structural polymorphism of these peculiar DNA structures. The aim of the present work is to show how Ultraviolet Resonance Raman (UVRR) spectroscopy can complement other techniques in providing valuable information about ligand/G4 interactions in solution. Here, the binding of BRACO-19 and Pyridostatin - two of the most potent ligands - to selected biologically relevant G4s was investigated by polarized UVRR scattering at 266 nm. The results give new insights into the binding mode of these ligands to G4s having different sequences and topologies by performing an accurate analysis of peaks assigned to specific groups and their changes upon binding. Indeed, the UVRR data not only show that BRACO-19 and Pyridostatin interact with different G4 sites, but also shed light on the ligand and G4 chemical groups really involved in the interaction. In addition, UVRR results complemented by circular dichroism data clearly indicate that the binding mode of a ligand can also depend on the conformation(s) of the target G4. Overall, these findings demonstrate the utility of using UVRR spectroscopy in the investigation of G4s and G4-ligand interactions in solution.


Assuntos
DNA/química , Quadruplex G , Análise Espectral Raman , Raios Ultravioleta , Dicroísmo Circular , Ligantes , Ligação Proteica
5.
Nucleic Acids Res ; 46(22): 11927-11938, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30407585

RESUMO

A multi-technique approach, combining circular dichroism spectroscopy, ultraviolet resonance Raman spectroscopy and small angle scattering techniques, has been deployed to elucidate how the structural features of the human telomeric G-quadruplex d[A(GGGTTA)3GGG] (Tel22) change upon thermal unfolding. The system is studied both in the free form and when it is bound to Actinomycin D (ActD), an anticancer ligand with remarkable conformational flexibility. We find that at room temperature binding of Tel22 with ActD involves end-stacking upon the terminal G-tetrad. Structural evidence for drug-driven dimerization of a significant fraction of the G-quadruplexes is provided. When the temperature is raised, both free and bound Tel22 undergo melting through a multi-state process. We show that in the intermediate states of Tel22 the conformational equilibrium is shifted toward the (3+1) hybrid-type, while a parallel structure is promoted in the complex. The unfolded state of the free Tel22 is consistent with a self-avoiding random-coil conformation, whereas the high-temperature state of the complex is observed to assume a quite compact form. Such an unprecedented high-temperature arrangement is caused by the persistent interaction between Tel22 and ActD, which stabilizes compact conformations even in the presence of large thermal structural fluctuations.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Dactinomicina/química , Quadruplex G , Telômero/química , Sítios de Ligação , Dimerização , Temperatura Alta , Humanos , Cinética , Ligantes , Modelos Moleculares , Desnaturação de Ácido Nucleico , Termodinâmica
6.
J Synchrotron Radiat ; 25(Pt 1): 44-51, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271750

RESUMO

Time-resolved investigations have begun a new era of chemistry and physics, enabling the monitoring in real time of the dynamics of chemical reactions and matter. Induced transient optical absorption is a basic ultrafast electronic effect, originated by a partial depletion of the valence band, that can be triggered by exposing insulators and semiconductors to sub-picosecond extreme-ultraviolet pulses. Besides its scientific and fundamental implications, this process is very important as it is routinely applied in free-electron laser (FEL) facilities to achieve the temporal superposition between FEL and optical laser pulses with tens of femtoseconds accuracy. Here, a set of methodologies developed at the FERMI facility based on ultrafast effects in condensed materials and employed to effectively determine the FEL/laser cross correlation are presented.

7.
J Synchrotron Radiat ; 23(1): 132-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698055

RESUMO

The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

8.
Opt Lett ; 41(21): 5090-5093, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805693

RESUMO

Free-electron lasers (FELs) currently represent a step forward on time-resolved investigations on any phase of matter through pump-probe methods involving FELs and laser beams. That class of experiments requires an accurate spatial and temporal superposition of pump and probe beams on the sample, which at present is still a critical procedure. More efficient approaches are demanded to quickly achieve the superposition and synchronization of the beams. Here, we present what we believe is a novel technique based on an integrated device allowing the simultaneous characterization and the fast spatial and temporal overlapping of the beams, reducing the alignment procedure from hours to minutes.

9.
J Synchrotron Radiat ; 22(3): 553-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931068

RESUMO

The Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.

10.
Soft Matter ; 11(29): 5862-71, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26107102

RESUMO

The molecular mechanism responsible for the thermosensitive behaviour exhibited by pH-responsive cyclodextrin-based hydrogels is explored here with the twofold aim of clarifying some basic aspects of H-bond interactions in hydrogel phases and contributing to a future engineering of cyclodextrin hydrogels for targeted delivery and release of bioactive agents. The degree of H-bond association of water molecules entrapped in the gel network and the extent of intermolecular interactions involving the hydrophobic/hydrophilic moieties of the polymer matrix are probed by UV Raman and IR experiments, in order to address the question of how these different and complementary aspects combine to determine the pH-dependent thermal activation exhibited by these hydrogels. Complementary vibrational spectroscopies are conveniently employed in this study with the aim of safely disentangling the spectral response arising from the two main components of the hydrogel systems, i.e. the polymer matrix and water solvent. The experimental evidence suggests that the dominant effects in the mechanism of solvation of cyclodextrin-based hydrogels are due to the changes occurring, upon increasing of temperature, in the hydrophobicity character of specific chemical moieties of the polymer, as triggered by pH variations. The achievements of this work corroborate the potentiality of the UV Raman scattering technique, in combination with more conventional IR experiments, to provide a "molecular view" of complex macroscopic phenomena exhibited in hydrogel phases.


Assuntos
Ciclodextrinas/química , Hidrogéis/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectrofotometria Infravermelho , Análise Espectral Raman , Temperatura
11.
Analyst ; 140(5): 1477-85, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25615720

RESUMO

We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.


Assuntos
Dano ao DNA , DNA/química , Ferro/química , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman/métodos , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Oxirredução
12.
Phys Chem Chem Phys ; 17(16): 10987-92, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25824617

RESUMO

The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models).


Assuntos
Acetamidas/química , Água/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Análise Espectral Raman
13.
Opt Lett ; 39(17): 5110-3, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166086

RESUMO

We report on the possibility of extracting fast dynamical relaxation times from homodyne transient grating measurements. We demonstrate the validity of our approach by experimental measurements on liquid acetonitrile and by comparison with literature. This approach would be of tremendous help in the case of free-electron-laser-based transient grating experiments due to the overcoming of technical difficulties, such as large-angle geometries.

14.
Int J Biol Macromol ; 256(Pt 2): 128443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035952

RESUMO

The possibility of using deep eutectic solvents (DESs) as co-solvents for stabilizing and preserving the native structure of DNA provides an attractive opportunity in the field of DNA biotechnology. The rationale of this work is a systematic investigation of the effect of hydrated choline-based DES on the structural stability of a 30-base-pair double-stranded DNA model via a combination of spectroscopic experiments and MD simulations. UV absorption and CD experiments provide evidence of a significant contribution of DESs to the stabilization of the double-stranded canonical (B-form) DNA structure. Multi-wavelength synchrotron UV Resonance Raman (UVRR) measurements indicate that the hydration shell of adenine-thymine pairs is strongly perturbed in the presence of DESs and that the preferential interaction between H-bond sites of guanine residues and DESs is significantly involved in the stabilization of the dsDNA. Finally, MD calculations show that the minor groove of DNA is significantly selective for the choline part of the investigated DESs compared to the major groove. This finding is likely to have a significant impact not only in terms of thermal stability but also in the modulation of ligand-DNA interactions.


Assuntos
Colina , Solventes Eutéticos Profundos , Colina/química , Solventes/química , DNA , Pareamento de Bases
15.
J Chem Phys ; 139(1): 015101, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23822323

RESUMO

Glycine aqueous solutions have been studied as a function of temperature and concentration by means of UV Brillouin and Raman spectroscopes. Brillouin spectra provided information on the average relaxation time τα related to the mechanisms of hydrogen bonds (HBs) formation and breaking. The concentration-temperature behavior of τ has been compared to the vibrational dephasing lifetime of atoms involved in HBs, as derived by a lineshape analysis of Raman spectra. We point out how it is possible to trace the thermodynamic behavior of a selected HB from Raman data. In particular, our results confirm the predominant role played in the hydration process by the water molecules surrounding the hydrophobic groups and, furthermore, evidence how at low temperature the HB strength between these molecules is greater than those found in bulk water and between glycine and water molecules.


Assuntos
Glicina/química , Termodinâmica , Água/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Análise Espectral Raman , Temperatura , Vibração
16.
Int J Biol Macromol ; 250: 125905, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487990

RESUMO

In this contribution, we focused on a fundamental study targeting the interaction of water-soluble [6]helicene derivative 1 (1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide) with double-stranded (ds) DNA. A synthetic 30-base pair duplex, plasmid, chromosomal calf thymus and salmon DNA were investigated using electrochemistry, electrophoresis and spectroscopic tools supported by molecular dynamics (MD) and quantum mechanical approaches. Both experimental and theoretical work revealed the minor groove binding of 1 to the dsDNA. Both the positively charged imidazole ring and hydrophobic part of the side chain contributed to the accommodation of 1 into the dsDNA structure. Neither intercalation into the duplex DNA nor the stable binding of 1 to single-stranded DNA were found in topoisomerase relaxation experiments with structural components of 1, i.e. [6]helicene (2) and 1-butyl-3-methylimidazolium bromide (3), nor by theoretical calculations. Finally, the binding of optically pure enantiomers (P)-1 and (M)-1 was studied using circular dichroism spectroscopy, isothermal titration calorimetry and UV Resonance Raman (UVRR) methods. Using MD and quantum mechanical methods, minor groove and semi-intercalation were proposed for compound 1 as the predominant binding modes. From the UVRR findings, we also can conclude that 1 tends to preferentially interact with adenine and guanine residues in the structure of dsDNA.

17.
Rev Sci Instrum ; 93(11): 115109, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461546

RESUMO

The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20µm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.

18.
Life (Basel) ; 11(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440568

RESUMO

The hydrogen bonding of water and water/salt mixtures around the proline-based tripeptide model glycyl-l-prolyl-glycinamide·HCl (GPG-NH2) is investigated here by multi-wavelength UV resonance Raman spectroscopy (UVRR) to clarify the role of ion-peptide interactions in affecting the conformational stability of this peptide. The unique sensitivity and selectivity of the UVRR technique allow us to efficiently probe the hydrogen bond interaction between water molecules and proline residues in different solvation conditions, along with its influence on trans to cis isomerism in the hydrated tripeptide. The spectroscopic data suggest a relevant role played by the cations in altering the solvation shell at the carbonyl site of proline., while the fluoride and chloride anions were found to promote the establishment of the strongest interactions on the C=O site of proline. This latter effect is reflected in the greater stabilization of the trans conformers of the tripeptide in the presence of these specific ions. The molecular view provided by UVRR experiments was complemented by the results of circular dichroism (CD) measurements that show a strong structural stabilizing effect on the ß-turn motif of GPG-NH2 observed in the presence of KF as a co-solute.

19.
Struct Dyn ; 8(3): 034304, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34169118

RESUMO

Here, we report on the conceptual design, the hardware realization, and the first experimental results of a novel and compact x-ray polarimeter capable of a single-pulse linear polarization angle detection in the extreme ultraviolet photon energy range. The polarimeter is tested by performing time resolved pump-probe experiments on a Ni80Fe20 Permalloy film at the M2,3 Ni edge at an externally seeded free-electron laser source. Comparison with similar experiments reported in the literature shows the advantages of our approach also in view of future experiments.

20.
J Biophotonics ; 13(12): e202000150, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32729213

RESUMO

Cytosine plays a preeminent role in DNA methylation, an epigenetic mechanism that regulates gene expression, the misregulation of which can lead to severe diseases. Several methods are nowadays employed for assessing the global DNA methylation levels, but none of them combines simplicity, high sensitivity, and low operating costs to be translated into clinical applications. Ultraviolet (UV) resonant Raman measurements at excitation wavelengths of 272 nm, 260 nm, 250 nm, and 228 nm have been carried out on isolated deoxynucleoside triphosphates (dNTPs), on a dNTP mixture as well as on genomic DNA (gDNA) samples, commercial from salmon sperm and non-commercial from B16 murine melanoma cell line. The 228 nm excitation wavelength was identified as the most suitable energy for enhancing cytosine signals over the other DNA bases. The UV Raman measurements performed at this excitation wavelength on hyper-methylated and hypo-methylated DNA from Jurkat leukemic T-cell line have revealed significant spectral differences with respect to gDNA isolated from salmon sperm and mouse melanoma B16 cells. This demonstrates how the proper choice of the excitation wavelength, combined with optimized extraction protocols, makes UV Raman spectroscopy a suitable technique for highlighting the chemical modifications undergone by cytosine nucleotides in gDNA upon hyper- and hypo-methylation events.


Assuntos
Metilação de DNA , Análise Espectral Raman , Animais , DNA/genética , Epigênese Genética , Genômica , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa