RESUMO
The molecular composition of myelin membranes determines their structure and function. Even minute changes to the biochemical balance can have profound consequences for axonal conduction and the synchronicity of neural networks. Hypothesizing that the earliest indication of myelin injury involves changes in the composition and/or polarity of its constituent lipids, we developed a sensitive spectroscopic technique for defining the chemical polarity of myelin lipids in fixed frozen tissue sections from rodent and human. The method uses a simple staining procedure involving the lipophilic dye Nile Red, whose fluorescence spectrum varies according to the chemical polarity of the microenvironment into which the dye embeds. Nile Red spectroscopy identified histologically intact yet biochemically altered myelin in prelesioned tissues, including mouse white matter following subdemyelinating cuprizone intoxication, as well as normal-appearing white matter in multiple sclerosis brain. Nile Red spectroscopy offers a relatively simple yet highly sensitive technique for detecting subtle myelin changes.
Assuntos
Esclerose Múltipla/patologia , Bainha de Mielina/química , Oligodendroglia/patologia , Oxazinas/química , Espectrometria de Fluorescência/métodos , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Corantes Fluorescentes , Substância Cinzenta/química , Substância Cinzenta/citologia , Humanos , Lipídeos/química , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oligodendroglia/química , Substância Branca/química , Substância Branca/citologiaRESUMO
Background Cortical multiple sclerosis lesions are clinically relevant but inconspicuous at conventional clinical MRI. Double inversion recovery (DIR) and phase-sensitive inversion recovery (PSIR) are more sensitive but often unavailable. In the past 2 years, artificial intelligence (AI) was used to generate DIR and PSIR from standard clinical sequences (eg, T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery sequences), but multicenter validation is crucial for further implementation. Purpose To evaluate cortical and juxtacortical multiple sclerosis lesion detection for diagnostic and disease monitoring purposes on AI-generated DIR and PSIR images compared with MRI-acquired DIR and PSIR images in a multicenter setting. Materials and Methods Generative adversarial networks were used to generate AI-based DIR (n = 50) and PSIR (n = 43) images. The number of detected lesions between AI-generated images and MRI-acquired (reference) images was compared by randomized blinded scoring by seven readers (all with >10 years of experience in lesion assessment). Reliability was expressed as the intraclass correlation coefficient (ICC). Differences in lesion subtype were determined using Wilcoxon signed-rank tests. Results MRI scans of 202 patients with multiple sclerosis (mean age, 46 years ± 11 [SD]; 127 women) were retrospectively collected from seven centers (February 2020 to January 2021). In total, 1154 lesions were detected on AI-generated DIR images versus 855 on MRI-acquired DIR images (mean difference per reader, 35.0% ± 22.8; P < .001). On AI-generated PSIR images, 803 lesions were detected versus 814 on MRI-acquired PSIR images (98.9% ± 19.4; P = .87). Reliability was good for both DIR (ICC, 0.81) and PSIR (ICC, 0.75) across centers. Regionally, more juxtacortical lesions were detected on AI-generated DIR images than on MRI-acquired DIR images (495 [42.9%] vs 338 [39.5%]; P < .001). On AI-generated PSIR images, fewer juxtacortical lesions were detected than on MRI-acquired PSIR images (232 [28.9%] vs 282 [34.6%]; P = .02). Conclusion Artificial intelligence-generated double inversion-recovery and phase-sensitive inversion-recovery images performed well compared with their MRI-acquired counterparts and can be considered reliable in a multicenter setting, with good between-reader and between-center interpretative agreement. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Zivadinov and Dwyer in this issue.
Assuntos
Esclerose Múltipla , Humanos , Feminino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Inteligência Artificial , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodosRESUMO
It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients' tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients' individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients' individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients' individual tumour locations may capture both tumour biology and patients' performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of 'cancer neuroscience'.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/patologia , Estudos Transversais , Mutação , Glioma/patologia , Encéfalo/patologiaRESUMO
Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia , Lobo TemporalRESUMO
OBJECTIVE: Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4+ -lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon-myelin units as primary event in MS pathogenesis. METHODS: Using high resolution imaging histological brain specimens from patients with MS and non-neurological/non-MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. RESULTS: In MS brains, we detected blister-like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non-neurological/non-MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. INTERPRETATION: Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post-translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711-725.
Assuntos
Axônios/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Substância Branca/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Impressões Digitais de DNA , Feminino , Humanos , Imuno-Histoquímica , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Imagem Molecular , Esclerose Múltipla/diagnóstico , Glicoproteína Associada a Mielina/biossíntese , Glicoproteína Associada a Mielina/genética , Neuroimagem , Nós Neurofibrosos/patologia , Receptores de Glutamato/biossíntese , Canais de Sódio/metabolismoRESUMO
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo/patologia , Humanos , Medula Espinal/patologiaRESUMO
Upper and lower limb impairments are common in people with multiple sclerosis (pwMS), yet difficult to clinically identify in early stages of disease progression. Tasks involving complex motor control can potentially reveal more subtle deficits in early stages, and can be performed during functional MRI (fMRI) acquisition, to investigate underlying neural mechanisms, providing markers for early motor progression. We investigated brain activation during visually guided force matching of hand or foot in 28 minimally disabled pwMS (Expanded Disability Status Scale (EDSS) < 4 and pyramidal and cerebellar Kurtzke Functional Systems Scores ≤ 2) and 17 healthy controls (HC) using ultra-high field 7-Tesla fMRI, allowing us to visualise sensorimotor network activity in high detail. Task activations and performance (tracking lag and error) were compared between groups, and correlations were performed. PwMS showed delayed (+124 s, p = .002) and more erroneous (+0.15 N, p = .001) lower limb tracking, together with lower cerebellar, occipital and superior parietal cortical activation compared to HC. Lower activity within these regions correlated with worse EDSS (p = .034), lower force error (p = .006) and higher lesion load (p < .05). Despite no differences in upper limb task performance, pwMS displayed lower inferior occipital cortical activation. These results demonstrate that ultra-high field fMRI during complex hand and foot tracking can identify subtle impairments in lower limb movements and upper and lower limb brain activity, and differentiates upper and lower limb impairments in minimally disabled pwMS.
Assuntos
Córtex Cerebral/fisiopatologia , Pé/fisiopatologia , Mãos/fisiopatologia , Atividade Motora/fisiologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Desempenho Psicomotor/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.
Assuntos
Região CA2 Hipocampal/metabolismo , Região CA2 Hipocampal/patologia , Complemento C1q/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Sinapses/fisiologia , Idoso , Animais , Estudos de Casos e Controles , Cuprizona , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/etiologiaRESUMO
Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.
Assuntos
Córtex Cerebral/patologia , Meninges/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias/patologia , Neurônios/patologia , Adulto , Idoso , Animais , Morte Celular , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Humanos , Meninges/imunologia , Microglia/classificação , Microglia/imunologia , Microglia/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/imunologia , Fenótipo , RatosRESUMO
Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.
Assuntos
Química Encefálica , Doença de Parkinson/metabolismo , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Bancos de Espécimes Biológicos , Citoplasma/patologia , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Corpos de Lewy/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/ultraestrutura , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/genéticaRESUMO
An efficient network such as the human brain features a combination of global integration of information, driven by long-range connections, and local processing involving short-range connections. Whether these connections are equally damaged in multiple sclerosis is unknown, as is their relevance for cognitive impairment and brain function. Therefore, we cross-sectionally investigated the association between damage to short- and long-range connections with structural network efficiency, the functional connectome and cognition. From the Amsterdam multiple sclerosis cohort, 133 patients (age = 54.2 ± 9.6) with long-standing multiple sclerosis and 48 healthy controls (age = 50.8 ± 7.0) with neuropsychological testing and MRI were included. Structural connectivity was estimated from diffusion tensor images using probabilistic tractography (MRtrix 3.0) between pairs of brain regions. Structural connections were divided into short- (length < quartile 1) and long-range (length > quartile 3) connections, based on the mean distribution of tract lengths in healthy controls. To determine the severity of damage within these connections, (i) fractional anisotropy as a measure for integrity; (ii) total number of fibres; and (iii) percentage of tract affected by lesions were computed for each connecting tract and averaged for short- and long-range connections separately. To investigate the impact of damage in these connections for structural network efficiency, global efficiency was computed. Additionally, resting-state functional connectivity was computed between each pair of brain regions, after artefact removal with FMRIB's ICA-based X-noiseifier. The functional connectivity similarity index was computed by correlating individual functional connectivity matrices with an average healthy control connectivity matrix. Our results showed that the structural network had a reduced efficiency and integrity in multiple sclerosis relative to healthy controls (both P < 0.05). The long-range connections showed the largest reduction in fractional anisotropy (z = -1.03, P < 0.001) and total number of fibres (z = -0.44, P < 0.01), whereas in the short-range connections only fractional anisotropy was affected (z = -0.34, P = 0.03). Long-range connections also demonstrated a higher percentage of tract affected by lesions than short-range connections, independent of tract length (P < 0.001). Damage to long-range connections was more strongly related to structural network efficiency and cognition (fractional anisotropy: r = 0.329 and r = 0.447. number of fibres r = 0.321 and r = 0.278. and percentage of lesions: r = -0.219; r = -0.426, respectively) than damage to short-range connections. Only damage to long-distance connections correlated with a more abnormal functional network (fractional anisotropy: r = 0.226). Our findings indicate that long-range connections are more severely affected by multiple sclerosis-specific damage than short-range connections. Moreover compared to short-range connections, damage to long-range connections better explains network efficiency and cognition.
Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Imagem de Tensor de Difusão , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/psicologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Substância Branca/fisiopatologiaRESUMO
Cortical demyelinating lesions are clinically important in multiple sclerosis, but notoriously difficult to visualize with MRI. At clinical field strengths, double inversion recovery MRI is most sensitive, but still only detects 18% of all histopathologically validated cortical lesions. More recently, phase-sensitive inversion recovery was suggested to have a higher sensitivity than double inversion recovery, although this claim was not histopathologically validated. Therefore, this retrospective study aimed to provide clarity on this matter by identifying which MRI sequence best detects histopathologically-validated cortical lesions at clinical field strength, by comparing sensitivity and specificity of the thus far most commonly used MRI sequences, which are T2, fluid-attenuated inversion recovery (FLAIR), double inversion recovery and phase-sensitive inversion recovery. Post-mortem MRI was performed on non-fixed coronal hemispheric brain slices of 23 patients with progressive multiple sclerosis directly after autopsy, at 3 T, using T1 and proton-density/T2-weighted, as well as FLAIR, double inversion recovery and phase-sensitive inversion recovery sequences. A total of 93 cortical tissue blocks were sampled from these slices. Blinded to histopathology, all MRI sequences were consensus scored for cortical lesions. Subsequently, tissue samples were stained for proteolipid protein (myelin) and scored for cortical lesion types I-IV (mixed grey matter/white matter, intracortical, subpial and cortex-spanning lesions, respectively). MRI scores were compared to histopathological scores to calculate sensitivity and specificity per sequence. Next, a retrospective (unblinded) scoring was performed to explore maximum scoring potential per sequence. Histopathologically, 224 cortical lesions were detected, of which the majority were subpial. In a mixed model, sensitivity of T1, proton-density/T2, FLAIR, double inversion recovery and phase-sensitive inversion recovery was 8.9%, 5.4%, 5.4%, 22.8% and 23.7%, respectively (20, 12, 12, 51 and 53 cortical lesions). Specificity of the prospective scoring was 80.0%, 75.0%, 80.0%, 91.1% and 88.3%. Sensitivity and specificity did not significantly differ between double inversion recovery and phase-sensitive inversion recovery, while phase-sensitive inversion recovery identified more lesions than double inversion recovery upon retrospective analysis (126 versus 95; P < 0.001). We conclude that, at 3 T, double inversion recovery and phase-sensitive inversion recovery sequences outperform conventional sequences T1, proton-density/T2 and FLAIR. While their overall sensitivity does not exceed 25%, double inversion recovery and phase-sensitive inversion recovery are highly pathologically specific when using existing scoring criteria and their use is recommended for optimal cortical lesion assessment in multiple sclerosis.
Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/normas , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
ABSTRACT: No Abstract.
Assuntos
Laringoscópios , Laringoscopia , Cadáver , Tecnologia de Fibra Óptica , Humanos , Intubação IntratraquealRESUMO
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS). Repair through remyelination can be extensive, but quantification of remyelination remains challenging. To date, no method for standardized digital quantification of remyelination of MS lesions exists. This methodological study aims to present and validate a novel standardized method for myelin quantification in progressive MS brains to study myelin content more precisely. Fifty-five MS lesions in 32 tissue blocks from 14 progressive MS cases and five tissue blocks from 5 non-neurological controls were sampled. MS lesions were selected by macroscopic investigation of WM by standard histopathological methods. Tissue sections were stained for myelin with luxol fast blue (LFB) and histological assessment of de- or remyelination was performed by light microscopy. The myelin quantity was estimated with a novel myelin quantification method (MQM) in ImageJ. Three independent raters applied the MQM and the inter-rater reliability was calculated. We extended the method to diffusely appearing white matter (DAWM) and encephalitis to test potential wider applicability of the method. Inter-rater agreement was excellent (ICC = 0.96) and there was a high reliability with a lower- and upper limit of agreement up to -5.93% to 18.43% variation in myelin quantity. This study builds on the established concepts of histopathological semi-quantitative assessment of myelin and adds a novel, reliable and accurate quantitative measurement tool for the assessment of myelination in human post-mortem samples.
Assuntos
Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Substância Branca/patologia , Autopsia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Microscopia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Bainha de Mielina/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismoRESUMO
Multiple sclerosis is characterized at the gross pathological level by the presence of widespread focal demyelinating lesions of the myelin-rich white matter. However, it is becoming clear that grey matter is not spared, even during the earliest phases of the disease. Furthermore, grey matter damage may have an important role both in physical and cognitive disability. Grey matter pathology involves both inflammatory and neurodegenerative mechanisms, but the relationship between the two is unclear. Histological, immunological and neuroimaging studies have provided new insight in this rapidly expanding field, and form the basis of the most recent hypotheses on the pathogenesis of grey matter damage.
Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Animais , Córtex Cerebral/imunologia , Substância Cinzenta/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Esclerose Múltipla/imunologia , Substância Branca/imunologia , Substância Branca/patologiaRESUMO
INTRODUCTION: Progression-free survival (PFS) in glioma patients varies widely, even when stratifying for known predictors (i.e. age, molecular tumor subtype, presence of epilepsy, tumor grade and Karnofsky performance status). Neuronal activity has been shown to accelerate tumor growth in an animal model, suggesting that brain activity may be valuable as a PFS predictor. We investigated whether postoperative oscillatory brain activity, assessed by resting-state magnetoencephalography is of additional value when predicting PFS in glioma patients. METHODS: We included 27 patients with grade II-IV gliomas. Each patient's oscillatory brain activity was estimated by calculating broadband power (0.5-48 Hz) in 56 epochs of 3.27 s and averaged over 78 cortical regions of the Automated Anatomical Labeling atlas. Cox proportional hazard analysis was performed to test the predictive value of broadband power towards PFS, adjusting for known predictors by backward elimination. RESULTS: Higher broadband power predicted shorter PFS after adjusting for known prognostic factors (n = 27; HR 2.56 (95% confidence interval (CI) 1.15-5.70); p = 0.022). Post-hoc univariate analysis showed that higher broadband power also predicted shorter overall survival (OS; n = 38; HR 1.88 (95% CI 1.00-3.54); p = 0.038). CONCLUSIONS: Our findings suggest that postoperative broadband power is of additional value in predicting PFS beyond already known predictors.
Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Ondas Encefálicas , Glioma/diagnóstico , Glioma/cirurgia , Adulto , Biomarcadores Tumorais/fisiologia , Neoplasias Encefálicas/fisiopatologia , Proteínas Correpressoras , Feminino , Glioma/fisiopatologia , Humanos , Magnetoencefalografia , Masculino , Período Pós-Operatório , Prognóstico , Intervalo Livre de Progressão , Estudos RetrospectivosRESUMO
Cortical microstructural abnormalities are associated with clinical and cognitive deterioration in multiple sclerosis. Using diffusion tensor MRI, a higher fractional anisotropy has been found in cortical lesions versus normal-appearing cortex in multiple sclerosis. The pathological substrates of this finding have yet to be definitively elucidated. By performing a combined post-mortem diffusion tensor MRI and histopathology study, we aimed to define the histopathological substrates of diffusivity abnormalities in multiple sclerosis cortex. Sixteen subjects with multiple sclerosis and 10 age- and sex-matched non-neurological control donors underwent post-mortem in situ at 3 T MRI, followed by brain dissection. One hundred and ten paraffin-embedded tissue blocks (54 from multiple sclerosis patients, 56 from non-neurological controls) were matched to the diffusion tensor sequence to obtain regional diffusivity measures. Using immunohistochemistry and silver staining, cortical density of myelin, microglia, astrocytes and axons, and density and volume of neurons and glial cells were evaluated. Correlates of diffusivity abnormalities with histological markers were assessed through linear mixed-effects models. Cortical lesions (77% subpial) were found in 27/54 (50%) multiple sclerosis cortical regions. Multiple sclerosis normal-appearing cortex had a significantly lower fractional anisotropy compared to cortex from non-neurological controls (P = 0.047), whereas fractional anisotropy in demyelinated cortex was significantly higher than in multiple sclerosis normal-appearing cortex (P = 0.012) but not different from non-neurological control cortex (P = 0.420). Compared to non-neurological control cortex, both multiple sclerosis normal-appearing and demyelinated cortices showed a lower density of axons perpendicular to the cortical surface (P = 0.012 for both) and of total axons (parallel and perpendicular to cortical surface) (P = 0.028 and 0.012). In multiple sclerosis, demyelinated cortex had a lower density of myelin (P = 0.004), parallel (P = 0.018) and total axons (P = 0.029) versus normal-appearing cortex. Regarding the pathological substrate, in non-neurological controls, cortical fractional anisotropy was positively associated with density of perpendicular, parallel, and total axons (P = 0.031 for all). In multiple sclerosis, normal-appearing cortex fractional anisotropy was positively associated with perpendicular and total axon density (P = 0.031 for both), while associations with myelin, glial and total cells and parallel axons did not survive multiple comparison correction. Demyelinated cortex fractional anisotropy was positively associated with density of neurons, and total cells and negatively with microglia density, without surviving multiple comparison correction. Our results suggest that a reduction of perpendicular axons in normal-appearing cortex and of both perpendicular and parallel axons in demyelinated cortex may underlie the substrate influencing cortical microstructural coherence and being responsible for the different patterns of fractional anisotropy changes occurring in multiple sclerosis cortex.
Assuntos
Axônios/patologia , Córtex Cerebral/patologia , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Idoso , Anisotropia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neuroglia/patologiaRESUMO
MRI has improved the diagnostic work-up of multiple sclerosis, but inappropriate image interpretation and application of MRI diagnostic criteria contribute to misdiagnosis. Some diseases, now recognized as conditions distinct from multiple sclerosis, may satisfy the MRI criteria for multiple sclerosis (e.g. neuromyelitis optica spectrum disorders, Susac syndrome), thus making the diagnosis of multiple sclerosis more challenging, especially if biomarker testing (such as serum anti-AQP4 antibodies) is not informative. Improvements in MRI technology contribute and promise to better define the typical features of multiple sclerosis lesions (e.g. juxtacortical and periventricular location, cortical involvement). Greater understanding of some key aspects of multiple sclerosis pathobiology has allowed the identification of characteristics more specific to multiple sclerosis (e.g. central vein sign, subpial demyelination and lesional rims), which are not included in the current multiple sclerosis diagnostic criteria. In this review, we provide the clinicians and researchers with a practical guide to enhance the proper recognition of multiple sclerosis lesions, including a thorough definition and illustration of typical MRI features, as well as a discussion of red flags suggestive of alternative diagnoses. We also discuss the possible place of emerging qualitative features of lesions which may become important in the near future.
Assuntos
Esclerose Múltipla/diagnóstico por imagem , Guias de Prática Clínica como Assunto , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , NeuroimagemRESUMO
BACKGROUND: Videolaryngoscopy is increasingly advocated as the standard intubation technique, while fibreoptic intubation is broadly regarded as the 'gold standard' for difficult airways. Traditionally, the training of these techniques is on patients, though manikins, simulators and cadavers are also used, with their respective limitations. In this study, we investigated whether the novel 'Fix for Life' (F4L) cadaver model is a suitable and realistic model for the teaching of these two intubation techniques to novices in airway management. METHODS: Forty consultant anaesthetists and senior trainees were instructed to perform tracheal intubation with videolaryngoscopy and fibreoptic tracheoscopy in four F4L cadaver models. The primary outcome measure was the verbal rating scores (scale 1-10, higher scores indicate a better rating) for suitability and for realism of the F4L cadavers as training model for these techniques. Secondary outcomes included success rates of the procedures and the time to successful completion of the procedures. RESULTS: The mean verbal rating scores for suitability and realism for videolaryngoscopy was 8.3 (95% CI, 7.9-8.6) and 7.2 (95% CI, 6.7-7.6), respectively. For fibreoptic tracheoscopy, suitability was 8.2 (95% CI, 7.9-8.5) and realism 7.5 (95% CI, 7.1-7.8). In videolaryngoscopy, 100% of the procedures were successful. The mean (SD) time until successful tracheal intubation was 34.8 (30.9) s. For fibreoptic tracheoscopy, the success rate was 96.3%, with a mean time of 89.4 (80.1) s. CONCLUSIONS: We conclude that the F4L cadaver model is a suitable and realistic model to train and teach tracheal intubation with videolaryngoscopy and fibreoptic tracheoscopy to novices in airway management training.
Assuntos
Manuseio das Vias Aéreas , Anestesiologistas/educação , Tecnologia de Fibra Óptica/educação , Intubação Intratraqueal , Laringoscopia/educação , Cirurgia Vídeoassistida/educação , Adulto , Manuseio das Vias Aéreas/métodos , Cadáver , Desenho de Equipamento/métodos , Feminino , Tecnologia de Fibra Óptica/métodos , Humanos , Intubação Intratraqueal/métodos , Laringoscopia/métodos , Masculino , Pessoa de Meia-Idade , Cirurgia Vídeoassistida/métodosRESUMO
Background Previous studies have demonstrated extensive functional network disturbances in patients with multiple sclerosis (MS), showing a less efficient brain network. Recent studies indicate that the dynamic properties of the brain network show a strong correlation with cognitive function. Purpose To investigate network dynamics on functional MRI in cognitively impaired patients with MS. Materials and Methods In secondary analysis of prospectively acquired data, with imaging performed between 2008 and 2012, differences in regional functional network dynamics (ie, eigenvector centrality dynamics) between cognitively impaired and cognitively preserved participants with MS were investigated. Functional network dynamics were computed on images from functional MRI (3 T) by using a sliding-window approach. Cognitively impaired and preserved groups were compared by using a clusterwise permutation-based method. Results The study included 96 healthy control subjects and 332 participants with MS (including 226 women and 106 men; median age, 48.1 years ± 11.0). Among the 332 participants with MS, 87 were cognitively impaired and 180 had preserved cognitive function; mildly impaired patients (n = 65) were excluded. The cognitively impaired group included a higher proportion of men compared with the cognitively preserved group (35 of 87 [40%] vs 48 of 180 [27%], respectively; P = .02) and had a higher mean age (51.1 years vs 46.3 years, respectively; P < .01). The clusterwise permutation-based comparison at P less than .05 showed reduced centrality dynamics in default-mode, frontoparietal, and visual network regions on functional MRI in cognitively impaired participants versus cognitively preserved participants. A subsequent correlation and hierarchical clustering analysis revealed that the default-mode and visual networks normally demonstrate negatively correlated fluctuations in functional importance (r = -0.23 in healthy control subjects), with an almost complete loss of this negative correlation in cognitively impaired participants compared with cognitively preserved participants (r = -0.04 vs r = -0.14; corrected P = .02). Conclusion As shown on functional MRI, cognitively impaired patients with multiple sclerosis not only demonstrate reduced dynamics in default-mode, frontoparietal, and visual networks, but also show a loss of interplay between default-mode and visual networks. © RSNA, 2019 Online supplemental material is available for this article. See also the article by Eijlers et al and the editorial by Zivadinov and Dwyer in this issue.