Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Ther ; 30(10): 3155-3175, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35711141

RESUMO

Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Sistemas CRISPR-Cas , Doença Enxerto-Hospedeiro/metabolismo , Imunoterapia , Imunoterapia Adotiva , Camundongos , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
2.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316932

RESUMO

Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Dicloroacético/farmacologia , Inibidores Enzimáticos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Hipóxia Tumoral , Linhagem Celular , Feminino , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
3.
Acta Neurochir (Wien) ; 157(4): 559-63; discussion 563-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25413163

RESUMO

BACKGROUND: The objective of this study was to compare the three most prominent systems for stereotactic radiosurgery in terms of dosimetric characteristics: the Cyberknife system, the Gamma Knife Perfexion and the Novalis system. METHODS: Ten patients treated for recurrent grade I meningioma after surgery using the Cyberknife system were identified; the Cyberknife contours were exported and comparative treatment plans were generated for the Novalis system and Gamma Knife Perfexion. Dosimetric values were compared with respect to coverage, conformity index (CI), gradient index (GI) and beam-on time (BOT). RESULTS: All three systems showed comparable results in terms of coverage. The Gamma Knife and the Cyberknife system showed significantly higher levels of conformity than the Novalis system (Cyberknife vs Novalis, p = 0.002; Gamma Knife vs Novalis, p = 0.002). The Gamma Knife showed significantly steeper gradients compared with the Novalis and the Cyberknife system (Gamma Knife vs Novalis, p = 0.014; Gamma Knife vs Cyberknife, p = 0.002) and significantly longer beam-on times than the other two systems (BOT = 66 ± 21.3 min, Gamma Knife vs Novalis, p = 0.002; Gamma Knife vs Cyberknife, p = 0.002). CONCLUSIONS: The multiple focal entry systems (Gamma Knife and Cyberknife) achieve higher conformity than the Novalis system. The Gamma Knife delivers the steepest dose gradient of all examined systems. However, the Gamma Knife is known to require long beam-on times, and despite worse dose gradients, LINAC-based systems (Novalis and Cyberknife) offer image verification at the time of treatment delivery.


Assuntos
Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Radiometria , Radiocirurgia/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiocirurgia/instrumentação
4.
J Appl Clin Med Phys ; 15(1): 4437, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24423838

RESUMO

The Vero SBRT system was benchmarked in a planning study against the Novalis SRS system for quality of delivered dose distributions to intracranial lesions and assessing the Vero system's capacity for SRS. A total of 27 patients with one brain lesion treated on the Novalis system, with 3 mm leaf width MLC and C-arm gantry, were replanned for Vero, with a 5 mm leaf width MLC mounted on an O-ring gantry allowing rotations around both the horizontal and vertical axis. The Novalis dynamic conformal arc (DCA) planning included vertex arcs, using 90° couch rotation. These vertex arcs cannot be reproduced with Vero due to the mechanical limitations of the O-ring gantry. Alternative class solutions were investigated for the Vero. Additionally, to distinguish between the effect of MLC leaf width and different beam arrangements on dose distributions, the Vero class solutions were also applied for Novalis. In addition, the added value of noncoplanar IMRT was investigated in this study. Quality of the achieved dose distributions was expressed in the conformity index (CI) and gradient index (GI), and compared using a paired Student's t-test with statistical significance for p-values ≤ 0.05. For lesions larger than 5 cm3, no statistical significant difference in conformity was observed between Vero and Novalis, but for smaller lesions, the dose distributions showed a significantly better conformity for the Novalis (ΔCI = 13.74%, p = 0.0002) mainly due to the smaller MLC leaf width. Using IMRT on Vero reduces this conformity difference to nonsignificant levels. The cutoff for achieving a GI around 3, characterizing a sharp dose falloff outside the target volume was 4 cm3 for Novalis and 7 cm3 for Vero using DCA technique. Using noncoplanar IMRT, this threshold was reduced to 3 cm3 for the Vero system. The smaller MLC and the presence of the vertex fields allow the Novalis system to better conform the dose around the lesion and to obtain steeper dose falloff outside the lesion. Comparable dosimetric characteristics can be achieved with Vero for lesions larger than 3 cm3 and using IMRT.


Assuntos
Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional/métodos , Algoritmos , Simulação por Computador , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Prognóstico , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
5.
Radiother Oncol ; 186: 109808, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468067

RESUMO

BACKGROUND: Single-isocenter linac-based stereotactic radiosurgery (SRS) has emerged as a dedicated treatment option for multiple brain metastases. Consequently, image-guidance for patient positioning and motion management has become very important. The purpose of this study was to analyze intra-fraction errors measured with stereoscopic x-rays and their impact on the dose distribution. MATERIALS AND METHODS: Treatments were planned with non- coplanar dynamic conformal arcs for 33 patients corresponding to 127 brain lesions and 356 arcs. Intra-arc positioning errors were measuredusing stereoscopic x-rays (ExacTrac Dynamic, Brainlab), triggered during arc delivery. Couch corrections above 0.7 mm and 0.5° were always applied. Intra-arc positioning data was analyzed. The dose impact was evaluated by applying the measured errors to the dose given in each arc. RESULTS: Median residual errors were 0.10 mm, 0.13 mm and 0.08 mm for the lateral, longitudinal and vertical directions and 0.10°, 0.08° and 0.13° for the pitch, roll and yaw angles respectively. 90% of the treatment arcs showed shifts of less than 0.4 mm and 0.4°in all directions. Dosimetric impact of motion showed the largest losses in coverage on small targets. All targets achieved at least 95% of the prescription dose to 95% of their volume, even when planned without margins. CONCLUSIONS: Intra-fractional errors measured during beam delivery were found to be notably low with a dose impact that showed acceptable target coverage when applying these intra-arc errors to the dose distributions of the individual treatment arcs. Using an adequate immobilization and intra-fraction imaging prior to and during irradiation, no margins need to be added to compensate for intra-fraction motion.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Raios X , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia
6.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190291

RESUMO

xCT overexpression in cancer cells has been linked to tumor growth, metastasis and treatment resistance. Sulfasalazine (SSZ), an FDA-approved drug for the treatment of rheumatoid sarthritis, and inflammatory bowel diseases, has anticancer properties via inhibition of xCT, leading to the disruption of redox homeostasis. Since reactive oxygen species (ROS) are pivotal for the efficacy of radiotherapy (RT), elevated levels of ROS are associated with improved RT outcomes. In this study, the influence of SSZ treatment on the radiosensitivity of human colorectal cancer (CRC) cells was investigated. Our principal finding in human HCT116 and DLD-1 cells was that SSZ enhances the radiosensitivity of hypoxic CRC cells but does not alter the intrinsic radiosensitivity. The radiosensitizing effect was attributed to the depletion of glutathione and thioredoxin reductase levels. In turn, the reduction leads to excessive levels of ROS, increased DNA damage, and ferroptosis induction. Confirmation of these findings was performed in 3D models and in DLD-1 xenografts. Taken together, this study is a stepping stone for applying SSZ as a radiosensitizer in the clinic and confirms that xCT in cancer cells is a valid radiobiological target.

7.
Radiother Oncol ; 184: 109676, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084887

RESUMO

BACKGROUND AND PURPOSE: Head and neck cancer (HNC) patients experiencing anatomical changes during their radiotherapy (RT) course may benefit from adaptive RT (ART). We investigated the sensitivity of an electronic portal imaging device (EPID)-based in-vivo dosimetry (EIVD) system to detect patients that require ART and identified its limitations. MATERIALS AND METHODS: A retrospective study was conducted for 182 HNC patients: laryngeal cancer without elective lymph nodes (group A), postoperative RT (group B) and primary RT including elective lymph nodes (group C). The effect of anatomical changes on the dose distribution and volumetric changes was quantified. The receiver operating characteristic curve was used to obtain the optimal cut-off value for the gamma passing rate (%GP) with a dose difference of 3% and a distance to agreement of 3 mm. RESULTS: Fifty HNC patients receiving ART were analyzed: 1 in group A, 10 in group B and 39 in group C. Failed fractions (FFs) occurred in 1/1, 6/10 and 23/39 cases before ART in group A, B and C respectively. In the four cases in group B without FFs, only minor dosimetric changes were observed. One of the cases in group C without FFs had significant dosimetric changes (false negative). Three cases received ART because of clinical reasons that cannot be detected by EIVD. The optimal cut-off value for the %GP was 95%/95.2% for old/new generation machines respectively. CONCLUSION: EIVD combined with 3D imaging techniques can be synergistic in the detection of anatomical changes in HNC patients who benefit from ART.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Radiometria/métodos
8.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37568685

RESUMO

BACKGROUND: Preoperative chemoradiotherapy (CRT) is the standard treatment for T3-4 rectal cancer. Here, we compared image-guided and intensity-modulated RT (IG-IMRT) with a simultaneous integrated boost (SIB) (instead of concomitant chemotherapy) versus CRT in a multi-centric randomized trial. METHODS: cT3-4 rectal cancer patients were randomly assigned to receive preoperative IG-IMRT 46 Gy/23 fractions plus capecitabine 825 mg/m² twice daily (CRT arm) or IG-IMRT 46 Gy/23 fractions with an SIB to the rectal tumor up to a total dose of 55.2 Gy (RTSIB arm). RESULTS: A total of 174 patients were randomly assigned between April 2010 and May 2014. Grade 3 acute toxicities were 6% and 4% in the CRT and RTSIB arms, respectively. The mean fractional change in SUVmax at 5 weeks after completion of preoperative RT were -55.8% (±24.0%) and -52.9% (±21.6%) for patients in the CRT arm and RTSIB arm, respectively (p = 0.43). The pathologic complete response rate was 24% with CRT compared to 14% with RTSIB. There were no differences in 5-year overall survival (OS), progression-free survival (PFS) or local control (LC). CONCLUSIONS: The preoperative RTSIB approach was not inferior to CRT in terms of metabolic response, toxicity, OS, PFS and LC, and could be considered an available option for patients unfit for fluorouracil-based CRT.

9.
Front Oncol ; 13: 1245054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023165

RESUMO

Purpose/objectives: An artificial intelligence-based pseudo-CT from low-field MR images is proposed and clinically evaluated to unlock the full potential of MRI-guided adaptive radiotherapy for pelvic cancer care. Materials and method: In collaboration with TheraPanacea (TheraPanacea, Paris, France) a pseudo-CT AI-model was generated using end-to-end ensembled self-supervised GANs endowed with cycle consistency using data from 350 pairs of weakly aligned data of pelvis planning CTs and TrueFisp-(0.35T)MRIs. The image accuracy of the generated pCT were evaluated using a retrospective cohort involving 20 test cases coming from eight different institutions (US: 2, EU: 5, AS: 1) and different CT vendors. Reconstruction performance was assessed using the organs at risk used for treatment. Concerning the dosimetric evaluation, twenty-nine prostate cancer patients treated on the low field MR-Linac (ViewRay) at Montpellier Cancer Institute were selected. Planning CTs were non-rigidly registered to the MRIs for each patient. Treatment plans were optimized on the planning CT with a clinical TPS fulfilling all clinical criteria and recalculated on the warped CT (wCT) and the pCT. Three different algorithms were used: AAA, AcurosXB and MonteCarlo. Dose distributions were compared using the global gamma passing rates and dose metrics. Results: The observed average scaled (between maximum and minimum HU values of the CT) difference between the pCT and the planning CT was 33.20 with significant discrepancies across organs. Femoral heads were the most reliably reconstructed (4.51 and 4.77) while anal canal and rectum were the less precise ones (63.08 and 53.13). Mean gamma passing rates for 1%1mm, 2%/2mm, and 3%/3mm tolerance criteria and 10% threshold were greater than 96%, 99% and 99%, respectively, regardless the algorithm used. Dose metrics analysis showed a good agreement between the pCT and the wCT. The mean relative difference were within 1% for the target volumes (CTV and PTV) and 2% for the OARs. Conclusion: This study demonstrated the feasibility of generating clinically acceptable an artificial intelligence-based pseudo CT for low field MR in pelvis with consistent image accuracy and dosimetric results.

10.
Phys Imaging Radiat Oncol ; 22: 85-90, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35602547

RESUMO

Background and purpose: Postoperative ultrahypofractionated radiation therapy (UHFRT) in 5 fractions (fx) for breast cancer patients is as effective and safe as conventionally hypofractionated RT (HFRT) in 15 fx, liberating time for higher-level daily online Image-Guided Radiation Therapy (IGRT) corrections. In this retrospective study, treatment uncertainties occurring in patients treated with 5fx (5fx-group) were evaluated using electronic portal imaging device (EPID)-based in-vivo dosimetry (EIVD) and compared with the results from patients treated with conventionally HFRT (15fx-group) to validate the new technique and to evaluate if the shorter treatment schedule could have a positive effect on the treatment uncertainties. Materials and methods: EPID-based integrated transit dose images were acquired for each treatment fraction in the 5fx-group (203 patients) and on the first 3 days of treatment and weekly thereafter in the 15fx-group (203 patients). A total of 1015 EIVD measurements in the 5fx-group and 1144 in the 15fx-group were acquired. Of the latter group, 755 had been treated with online IGRT correction (i.e., Online-IGRT 15fx-group). Results: In the 15fx-group 12.0% of fractions failed (FFs) compared to 3.8% in the 5fx-group and 6.9% in the online-IGRT 15fx-group. Causes for FFs in the 15fx-group compared with the 5fx-group were patient positioning (7.4% vs. 2.2%), technical issues (3.1% vs. 1.2%) and breast swelling (1.4% vs. 0.5%). In the online-IGRT 15fx-group, 2.5% were attributed to patient positioning, 3.8% to technical issues and 0.5% to breast swelling. Conclusions: EIVD demonstrated that UHFRT for breast cancer results in less FFs compared to standard HFRT. A large proportion of this decrease could be explained by using daily online IGRT.

11.
Radiother Oncol ; 170: 118-121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257850

RESUMO

Pre-operative 5-fraction breast radiotherapy followed by immediate breast-sparing surgery and sentinel node procedure was feasible in 14 patients with 15 clinical early-stage breast cancers. However wound problems occurred frequently and was documented in 5 of the 14 patients: 2 patients with a mastitis needing antibiotics, 2 patients developed a fistula with exudate needing antibiotics and local disinfection and 1 patient developed a fistula needing surgical reintervention. Other acute and late iatrogenic events were rather limited. Two patients had a pathological lymph node involvement, which underlines the importance to perform the sentinel node procedure before pre-operative radiotherapy.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Antibacterianos , Axila/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Estudos de Viabilidade , Feminino , Humanos , Excisão de Linfonodo , Linfonodos/patologia , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela/métodos
12.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291844

RESUMO

Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.

13.
Curr Opin Neurol ; 24(6): 616-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22071335

RESUMO

PURPOSE OF REVIEW: This review provides information and an update on stereotactic radiosurgery (SRS) equipment, with a focus on intracranial lesions and brain neoplasms. RECENT FINDINGS: Gamma Knife radiosurgery represents the gold standard for intracranial radiosurgery, using a dedicated equipment, and has recently evolved with a newly designed technology, Leksell Gamma Knife Perfexion. Linear accelerator-based radiosurgery is more recent, and originally based on existing systems, either adapted or dedicated to radiosurgery. Equipment incorporating specific technologies, such as the robotic CyberKnife system, has been developed. Novel concepts in radiation therapy delivery techniques, such as intensity-modulated radiotherapy, were also developed; their integration with computed tomography imaging and helical delivery has led to the TomoTherapy system. Recent data on the management of intracranial tumors with radiosurgery illustrate the trend toward a larger use and acceptance of this therapeutic modality. SUMMARY: SRS has become an important alternative treatment for a variety of lesions. Each radiosurgery system has its advantages and limitations. The 'perfect' and ubiquitous system does not exist. The choice of a radiosurgery system may vary with the strategy and needs of specific radiosurgery programs. No center can afford to acquire every technology, and strategic choices have to be made. Institutions with large neurosurgery and radiation oncology programs usually have more than one system, allowing optimization of the management of patients with a choice of open neurosurgery, radiosurgery, and radiotherapy. Given its minimally invasive nature and increasing clinical acceptance, SRS will continue to progress and offer new advances as a therapeutic tool in neurosurgery and radiotherapy.


Assuntos
Neoplasias Encefálicas/cirurgia , Encéfalo/patologia , Encéfalo/cirurgia , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/patologia , Humanos , Tomografia Computadorizada por Raios X/instrumentação
14.
Int J Radiat Oncol Biol Phys ; 111(1): 272-283, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865948

RESUMO

PURPOSE: The combination of standard-of-care radiation therapy (RT) with immunotherapy is moving to the mainstream of non-small cell lung cancer treatment. Multiple preclinical studies reported on the CD8+ T cell stimulating properties of RT, resulting in abscopal therapeutic effects. A literature search demonstrates that most preclinical lung cancer studies applied subcutaneous lung tumor models. Hence, in-depth immunologic evaluation of clinically relevant RT in orthotopic lung cancer models is lacking. METHODS AND MATERIALS: We studied the therapeutic and immunologic effects of low-dose fractionated RT on lungs from C57BL/6 mice, challenged 2 weeks before with firefly luciferase expressing Lewis lung carcinoma cells via the tail vein. Low-dose fractionation was represented by 4 consecutive daily fractions of image guided RT at 3.2 Gy. RESULTS: We showed reduced lung tumor growth upon irradiation using in vivo bioluminescence imaging and immunohistochemistry. Moreover, significant immunologic RT-induced changes were observed in irradiated lungs and in the periphery (spleen and blood). First, a significant decrease in the number of CD8+ T cells and trends toward more CD4+ and regulatory T cells were seen after RT in all evaluated tissues. Notably, only in the periphery did the remaining CD8+ T cells show a more activated phenotype. In addition, a significant expansion of neutrophils and monocytes was observed upon RT locally and systemically. Locally, RT increased the influx of tumor-associated macrophages and conventional type 2 dendritic cells, whereas the alveolar macrophages and conventional type 1 DCs dramatically decreased. Functionally, these antigen-presenting cells severely reduced their CD86 expression, suggesting a reduced capacity to induce potent immunity. CONCLUSIONS: Our results imply that low-dose fractionated RT of tumor-bearing lung tissue shifts the immune cell balance toward an immature myeloid cell dominating profile. These data argue for myeloid cell repolarizing strategies to enhance the abscopal effects in patients with non-small cell lung cancer treated with fractionated RT.


Assuntos
Células Apresentadoras de Antígenos/efeitos da radiação , Linfócitos T CD8-Positivos/efeitos da radiação , Fracionamento da Dose de Radiação , Neoplasias Pulmonares/radioterapia , Animais , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL
15.
Front Immunol ; 12: 772555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925341

RESUMO

The combination of radiotherapy (RT) with immunotherapy represents a promising treatment modality for non-small cell lung cancer (NSCLC) patients. As only a minority of patients shows a persistent response today, a spacious optimization window remains to be explored. Previously we showed that fractionated RT can induce a local immunosuppressive profile. Based on the evolving concept of an immunomodulatory role for vagal nerve stimulation (VNS), we tested its therapeutic and immunological effects alone and in combination with fractionated RT in a preclinical-translational study. Lewis lung carcinoma-bearing C57Bl/6 mice were treated with VNS, fractionated RT or the combination while a patient cohort with locally advanced NSCLC receiving concurrent radiochemotherapy (ccRTCT) was enrolled in a clinical trial to receive either sham or effective VNS daily during their 6 weeks of ccRTCT treatment. Preclinically, VNS alone or with RT showed no therapeutic effect yet VNS alone significantly enhanced the activation profile of intratumoral CD8+ T cells by upregulating their IFN-γ and CD137 expression. In the periphery, VNS reduced the RT-mediated rise of splenic, but not blood-derived, regulatory T cells (Treg) and monocytes. In accordance, the serological levels of protumoral CXCL5 next to two Treg-attracting chemokines CCL1 and CCL22 were reduced upon VNS monotherapy. In line with our preclinical findings on the lack of immunological changes in blood circulating immune cells upon VNS, immune monitoring of the peripheral blood of VNS treated NSCLC patients (n=7) did not show any significant changes compared to ccRTCT alone. As our preclinical data do suggest that VNS intensifies the stimulatory profile of the tumor infiltrated CD8+ T cells, this favors further research into non-invasive VNS to optimize current response rates to RT-immunotherapy in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Lewis/radioterapia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Estimulação do Nervo Vago , Idoso , Animais , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Carga Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-33294646

RESUMO

PURPOSE/OBJECTIVE: In all treatment sites of our radiotherapy network, in vivo dosimetry (PerFRACTION™) was fully implemented in February 2018. We hypothesized that additional help with bladder and rectum preparation by home nursing would improve patients' preparation and investigated if this could be assessed using in vivo dosimetry (IVD). MATERIALS/METHODS: A retrospective study was conducted with a test group who received additional help with bladder and rectum preparation by home nurses and a control group who only received information on bladder and rectum preparation according to the standard protocol. Patients were treated with a 6 MV Volumetric Modulated Arc Therapy (VMAT) technique. Electronic portal imaging device (EPID)-based integrated transit dose images were acquired on the first 3 days of treatment and weekly thereafter or more if failed fractions (FF) occurred. Results were analyzed using a global gamma analysis with a threshold of 20%, tolerance of 5% (dose difference) and 5 mm (distance to agreement), and a passing level of 95%. RESULTS: Data of 462 prostate patients was analyzed: 39 and 423 in a test and control group respectively with a comparable number of measurements (on average 8.0 (σ = 4.8) and 7.1 (σ = 4.5) respectively per treatment course). Of the FF, 39% and 31% were related to variations in bladder and rectum filling for the test and control group respectively. Subgroups were created based on the number of FF, no statistically significant differences were observed. CONCLUSION: Two dimensional EPID-based IVD successfully detected deviations due to variations in bladder and rectum filling, however it could not confirm the hypothesis.

18.
Ecancermedicalscience ; 13: 982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010206

RESUMO

Particle, essentially, proton radiotherapy (RT) could provide some benefits over photon RT, especially in reducing the side effects of RT. We performed a systematic review to identify the performed randomised clinical trials (RCTs) and ongoing RCTs comparing particle RT with photon therapy. So far, there are no results available from phase 3 RCTs comparing particle RT with photon therapy. Furthermore, the results on side effects comparing proton and carbon ion beam RT with photon RT do vary. The introduction of new techniques in photon RT, such as image-guided RT (IGRT), intensity-modulated RT (IMRT), volumetric arc therapy (VMAT) and stereotactic body RT (SBRT) was already effective in reducing side effects. At present, the lack of evidence limits the indications for proton and carbon ion beam RTs and makes the particle RT still experimental.

19.
Cancer Lett ; 450: 42-52, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30790679

RESUMO

Piperlongumine (PL), naturally synthesized in long pepper, is known to selectively kill tumor cells via perturbation of reactive oxygen species (ROS) homeostasis. ROS are the primary effector molecules of radiation, and increase of ROS production by pharmacological modulation is known to enhance radioresponse. We therefore investigated the radiosensitizing effect of PL in colorectal cancer cells (CT26 and DLD-1) and CT26 tumor-bearing mice. Firstly, we found that PL induced excessive production of ROS due to depletion of glutathione and inhibition of thioredoxin reductase. Secondly, PL enhanced both the intrinsic and hypoxic radiosensitivity of tumor cells, linked to ROS-mediated increase of DNA damage, G2/M cell cycle arrest, and inhibition of cellular respiration. Finally, the radiosensitizing effect of PL was verified in vivo. PL improved the tumor response to both single and fractionated radiation, resulting in a significant increase of survival rate of tumor-bearing mice, while it was ineffective on its own. In line with in vitro findings, enhanced radioresponse is associated with inhibition of antioxidant systems. In conclusion, our results suggest that PL could be a potential radiosensitizer in colorectal cancer.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Dioxolanos/farmacologia , Glutationa/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Dano ao DNA , Glutationa/metabolismo , Humanos , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Tiorredoxinas/metabolismo
20.
J Neurosurg ; 128(2): 352-361, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28338441

RESUMO

OBJECTIVE The authors present a retrospective analysis of a single-center experience with treatment of brain metastases using Gamma Knife (GK) and linear accelerator (LINAC)-based radiosurgery and compare the results. METHODS From July 2010 to July 2012, 63 patients with brain metastases were treated with radiosurgery. Among them, 28 (with 83 lesions) were treated with a GK unit and 35 (with 47 lesions) with a LINAC. The primary outcome was local progression-free survival (LPFS), evaluated on a per-lesion basis. The secondary outcome was overall survival (OS), evaluated per patient. Statistical analysis included standard tests and Cox regression with shared-frailty models to account for the within-patient correlation. RESULTS The mean follow-up period was 11.7 months (median 7.9 months, range 1.7-32 months) for GK and 18.1 months (median 17 months, range 7.5-28.7 months) for LINAC. The median number of lesions per patient was 2.5 (range 1-9) in the GK group and 1 (range 1-3) in the LINAC group (p < 0.01, 2-sample t-test). There were more radioresistant lesions (e.g., melanoma) and more lesions located in functional areas in the GK group. Additional technical reasons for choosing GK instead of LINAC were limitations of LINAC movements, especially if lesions were located in the lower posterior fossa or multiple lesions were close to highly functional areas (e.g., the brainstem), precluding optimal dosimetry with LINAC. The median marginal dose was 24 Gy with GK and 20 Gy with LINAC (p < 0.01, 2-sample t-test). For GK, the actuarial LPFS rate at 3, 6, 9, 12, and 17 months was 96.96%, 96.96%, 96.96%, 88.1%, and 81.5%, remaining stable until 32 months. For LINAC the rate at 3, 6, 12, 17, 24, and 33 months was 91.5%, 91.5%, 91.5%, 79.9%, 55.5%, and 17.1% (log-rank p = 0.03). In the Cox regression with shared-frailty model, the risk of local progression in the LINAC group was almost twice that of the GK group (HR 1.92, p > 0.05). The mean OS was 16.0 months (95% CI 11.2-20.9 months) in the GK group, compared with 20.9 months (95% CI 16.4-25.3 months) in the LINAC group. Univariate and multivariate analysis showed that a lower graded prognostic assessment (GPA) score, noncontrolled systemic status at last radiological assessment, and older age were associated with lower OS; after adjustment of these covariables by Cox regression, the OS was similar in the 2 groups. CONCLUSIONS In this retrospective study comparing GK and LINAC-based radiosurgery for brain metastases, patients with more severe disease were treated by GK, including those harboring lesions of greater number, of radioresistant type, or in highly functional areas. The risk of local progression for the LINAC group was almost twice that in the GK group, although the difference was not statistically significant. Importantly, the OS rates were similar for the 2 groups, although GK was used in patients with more complex brain metastatic disease and with no other therapeutic alternative.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Aceleradores de Partículas , Radiocirurgia/métodos , Adulto , Idoso , Estudos de Coortes , Irradiação Craniana , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , Doses de Radiação , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa