RESUMO
KEY MESSAGE: We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.
Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologiaRESUMO
KEY MESSAGE: The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was phenotyped for Puccinia triticina resistance in multi-years' field trials at three locations and in a controlled environment seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions. The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resistances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phenotypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can be easily introduced in breeding programs.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Puccinia/patogenicidade , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologiaRESUMO
KEY MESSAGE: Quantitative trait locus (QTL) mapping of 15 yield component traits in a German multi-founder population identified eight QTL each controlling ≥2 phenotypes, including the genetic loci Rht24, WAPO-A1 and WAPO-B1. Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing the culmination of many developmental processes and their interactions with the environment. Toward maintaining genetic gains in yield potential, 'reductionist approaches' are commonly undertaken by which the genetic control of yield components, that collectively determine yield, are established. Here we use an eight-founder German multi-parental wheat population to investigate the genetic control and phenotypic trade-offs between 15 yield components. Increased grains per ear was significantly positively correlated with the number of fertile spikelets per ear and negatively correlated with the number of infertile spikelets. However, as increased grain number and fertile spikelet number per ear were significantly negatively correlated with thousand grain weight, sink strength limitations were evident. Genetic mapping identified 34 replicated quantitative trait loci (QTL) at two or more test environments, of which 24 resolved into eight loci each controlling two or more traits-termed here 'multi-trait QTL' (MT-QTL). These included MT-QTL associated with previously cloned genes controlling semi-dwarf plant stature, and with the genetic locus Reduced height 24 (Rht24) that further modulates plant height. Additionally, MT-QTL controlling spikelet number traits were located to chromosome 7A encompassing the gene WHEAT ORTHOLOG OF APO1 (WAPO-A1), and to its homoeologous location on chromosome 7B containing WAPO-B1. The genetic loci identified in this study, particularly those that potentially control multiple yield components, provide future opportunities for the targeted investigation of their underlying genes, gene networks and phenotypic trade-offs, in order to underpin further genetic gains in yield.
Assuntos
Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Triticum/classificação , Triticum/genética , Triticum/metabolismoRESUMO
Hybrid wheat breeding has the potential to significantly increase wheat productivity compared to line breeding. The induction of male sterility by the cytoplasm of Triticum timopheevii Zhuk. is a widely discussed approach to ensure cross-pollination between parental inbred lines in hybrid wheat seed production. As fertility restoration in hybrids with this cytoplasm is often incomplete, understanding the underlying genetics is a prerequisite to apply this technology. A promising component for fertility restoration is the restorer locus Rf1, which was first detected on chromosome 1A of the restorer accession R3. In the present study, we performed quantitative trait locus (QTL) analyses to locate Rf1 and estimate its effect in populations involving the restorer lines R3, R113 and L19. Molecular markers linked to Rf1 in these populations were used to analyse the genomic target region in T. timopheevii accessions and common wheat breeding lines. The QTL analyses revealed that Rf1 interacted with a modifier locus on chromosome 1BS and the restorer locus Rf4 on chromosome 6B. The modifier locus significantly influenced both the penetrance and expressivity of Rf1. Whereas Rf1 exhibited expressivity higher than that of Rf4, the effects of these loci were not additive. Evaluating the marker haplotype for the Rf1 region, we propose that the restoring Rf1 allele may be derived exclusively from T. timopheevii. The present study demonstrates that interactions between restorer and modifier loci play a critical role in fertility restoration of common wheat with the cytoplasm of T. timopheevii.
Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Cruzamentos Genéticos , Fertilidade/genética , Genética Populacional/métodos , Haplótipos , Hibridização Genética , Melhoramento Vegetal/métodosRESUMO
Grain protein content (GPC) is one of the most important criteria to determine the quality of common wheat (Triticum aestivum). One of the major obstacles for bread wheat production is the negative correlation between GPC and grain yield (GY). Previous studies demonstrated that the deviation from this inverse relationship is highly heritable. However, little is known about the genetics controlling these deviations in common wheat. To fill this gap, we performed quantitative trait locus (QTL) analysis for GY, GPC, and four derived GY-GPC indices using an eight-way multiparent advanced generation intercross population comprising 394 lines. Interval mapping was conducted using phenotypic data from up to nine environments and genotypic data from a 20k single-nucleotide polymorphism array. The four indices were highly heritable (0.76-0.88) and showed distinct correlations to GY and GPC. Interval mapping revealed that GY, GPC, and GY-GPC indices were controlled by 6, 12, and 12 unique QTL, of which each explained only a small amount of phenotypic variance (R2 ≤ 10%). Ten of the 12 index QTL were independent of loci affecting GY and GPC. QTL regions harboured several candidate genes, including Rht-1, WAPO-A1, TaTEF-7A, and NRT2.6-7A. The study confirmed the usefulness of indices to mitigate the inverse GY-GPC relationship in breeding, though the selection method should reflect their polygenic inheritance.
RESUMO
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
RESUMO
Wheat (Triticum aestivum L.) is a self-pollinating crop whose hybrids offer the potential to provide a major boost in yield. Male sterility induced by the cytoplasm of Triticum timopheevii is a powerful method for hybrid seed production. Hybrids produced by this method are often partially sterile, and full fertility restoration is crucial for wheat production using hybrid cultivars. To identify the genetic loci controlling fertility restoration in wheat, we produced two cytoplasmic male-sterile (CMS) backcross (BC1) mapping populations. The restorer lines Gerek 79 and 71R1203 were used to pollinate the male-sterile winter wheat line CMS-Sperber. Seed set and numbers of sterile spikelets per spike were evaluated in 340 and 206 individuals of the populations derived from Gerek 79 and 71R1203, respectively. Genetic maps were constructed using 930 and 994 single nucleotide polymorphism (SNP) markers, spanning 2,160 and 2,328 cM over 21 linkage groups in the two populations, respectively. Twelve quantitative trait loci (QTL) controlled fertility restoration in both BC1 populations, including a novel restorer-of-fertility (Rf) locus flanked by the SNP markers IWB72413 and IWB1550 on chromosome 6AS. The locus was mapped as a qualitative trait in the BC1 Gerek 79 population and was designated Rf9. One hundred-nineteen putative candidate genes were predicted within the QTL region on chromosome 6AS. Among them were genes encoding mitochondrial transcription termination factor and pentatricopeptide repeat-containing proteins that are known to be associated with fertility restoration. This finding is a promising step to better understand the functions of genes for improving fertility restoration in hybrid wheat.