Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Syst ; 47(1): 79, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498478

RESUMO

This article presents a comprehensive review of the state-of-the-art applications and methodologies related to the use of unmanned aerial vehicles (UAVs) in the healthcare sector, with a particular focus on path planning. UAVs have gained remarkable attention in healthcare during the outbreak of COVID-19, and this study explores their potential as a viable option for medical transportation. The survey categorizes existing studies by mission type, challenges addressed, and performance metrics to provide a clearer picture of the path planning problems and potential directions for future research. It highlights the importance of addressing the path planning problem and the challenges that UAVs may face during their missions, including the UAV delivery range limitation, and discusses recent solutions in this field. The study concludes by encouraging researchers to conduct their studies in a realistic environment to reveal UAVs' real potential, usability, and feasibility in the healthcare domain.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Dispositivos Aéreos não Tripulados , Benchmarking , Surtos de Doenças , Setor de Assistência à Saúde
2.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635411

RESUMO

Area monitoring and surveillance are some of the main applications for Unmanned Aerial Vehicle (UAV) networks. The scientific problem that arises from this application concerns the way the area must be covered to fulfill the mission requirements. One of the main challenges is to determine the paths for the UAVs that optimize the usage of resources while minimizing the mission time. Different approaches rely on area partitioning strategies. Depending on the size and complexity of the area to monitor, it is possible to decompose it exactly or approximately. This paper proposes a partitioning method called Parallel Partitioning along a Side (PPS). In the proposed method, grid-mapping and grid-subdivision of the area, as well as area partitioning are performed to plan the UAVs path. An extra challenge, also tackled in this work, is the presence of non-flying zones (NFZs). These zones are areas that UAVs must not cover or pass over it. The proposal is extensively evaluated, in comparison with existing approaches, to show that it enables UAVs to plan paths with minimum energy consumption, number of turns and completion time while at the same time increases the quality of coverage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa