Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D536-D544, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37904608

RESUMO

The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network-all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
2.
Comput Biol Chem ; 69: 19-27, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544873

RESUMO

A great challenge in medicinal chemistry is to develop different methods for structural design based on the pattern of the previously synthesized compounds. In this study two different QSAR methods were established and compared for a series of piperidine acetylcholinesterase inhibitors. In one novel approach, PC-LS-SVM and PLS-LS-SVM was used for modeling 3D interaction descriptors, and in the other method the same nonlinear techniques were used to build QSAR equations based on field descriptors. Different validation methods were used to evaluate the models and the results revealed the more applicability and predictive ability of the model generated by field descriptors (Q2LOO-CV=1, R2ext=0.97). External validation criteria revealed that both methods can be used in generating reasonable QSAR models. It was concluded that due to ability of interaction descriptors in prediction of binding mode, using this approach can be implemented in future 3D-QSAR softwares.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Software , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Ligantes , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa