Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 70(10): 789-98, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17454555

RESUMO

N,N-Dimethyl-p-toluidine (DMPT) is used as a polymerization accelerator, in industrial glues, and as an intermediate in dye and pesticide synthesis. There is potential for human exposure to DMPT. The disposition of oral and intravenous (i.v.) doses of [14C]DMPT in F344 rats and B6C3F1 mice was investigated. A single i.v. (2.5 mg/kg) or oral (2.5, 25, or 250 mg/kg) dose of [14C]DMPT (1-25 microCi) was administered in an aqueous vehicle to male rats and mice. The 25-mg/kg oral dose was administered to females to investigate possible gender differences in disposition. However, no striking gender differences were observed. Since toxicity studies conducted elsewhere used a corn oil vehicle, the 250-mg/kg oral dose also was administered in corn oil to male rats; disposition was not dependent on vehicle. Excreta (through 24 h) and tissues collected at sacrifice were analyzed for total radioactivity. Dose-dependent differences in toxicity and disposition were observed. Toxicity at the 250-mg/kg oral dose to male mice was consistent with acute renal failure. At the same dose, male rats exhibited clinical signs of toxicity through 12 h but were clinically normal by 24 h. At lower oral doses, [14C]DMPT-derived radioactivity was well absorbed and rapidly excreted, primarily in urine.


Assuntos
Toluidinas/farmacocinética , Administração Oral , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos F344 , Distribuição Tecidual , Toluidinas/administração & dosagem
2.
J Toxicol Environ Health A ; 70(10): 781-8, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17454554

RESUMO

The metabolism of orally administered N,N-dimethyl-p-toluidine (DMPT) in male F344 rats was investigated. The rat urinary metabolite profile was determined by analytical reverse-phase high performance liquid chromatography (HPLC). Four radiolabeled peaks were observed, isolated, and purified by solid-phase extraction (SPE) and preparative HPLC methods. The 4 peaks were identified as p-(N-acetylhydroxyamino)hippuric acid (M1), DMPT N-oxide (M2), N-methyl-p-toluidine (M3), and parent DMPT. Metabolites M1 and M2 were identified by spectrometric and spectroscopic methods, including mass fragmentation pattern identification from both liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry, and from chemical analysis of nuclear magnetic resonance spectra. Structural confirmation of metabolite M2 was accomplished by comparison with a synthetic standard. Peaks M3 and the peak suspected to be DMPT were identified by comparison of their HPLC retention times and mass fragmentation patterns with authentic standards of N-methyl-p-toluidine and DMPT, respectively. DMPT metabolism is similar to that reported for N,N-dimethylaniline.


Assuntos
Toluidinas/urina , Administração Oral , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Ratos , Ratos Endogâmicos F344 , Toluidinas/administração & dosagem
3.
J Toxicol Environ Health A ; 70(7): 582-93, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17365612

RESUMO

The disposition of [14C]methyltetrahydrofuran (14C-MTHF) in rats and mice was determined by following changes in the radioactivity in tissue and excreta with time after dosing. MTHF administered orally (1, 10, or 100 mg/kg) or intravenously (1 mg/kg) to either rats or mice was rapidly metabolized and excreted with <8% (mice) or 8-22% (rats) of the dose remaining in the body after 24 h (1 and 10 mg/kg doses) or 72 h (100 mg/kg dose). Based on recovery of radioactivity in excreta (other than feces) and tissues (other than the gastrointestinal [GI] tract), absorption of orally administered MTHF was essentially complete (93-100%). There were no overt signs of toxicity observed at any dose studied. The major route of excretion in mice was in urine followed by exhaled CO2. In rats the major route of excretion was exhaled CO2 followed by urinary excretion. The excretion of exhaled volatile organic compounds (VOC) was dose-dependent in both species; at lower doses exhaled VOC represented 1-5% of dose, but at the highest dose (100 mg/kg) this proportion rose to 14% (mice) and 27% (rats). Analysis of the VOCs exhaled at the high dose indicated that the increase was due to exhalation of the parent compound, 14C-MTHF. Analysis of urine showed three highly polar peaks in the mouse urine and two polar peaks in the rat urine. Because the 14C label in MTHF was in the methyl group, the polar metabolites were considered likely due to the one-carbon unit getting into the metabolic pool and labeling intermediate dietary metabolites.


Assuntos
Poluentes Ambientais/farmacocinética , Furanos/farmacocinética , Administração Oral , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa