Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PLoS Genet ; 19(10): e1010913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796765

RESUMO

The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.


Assuntos
Aminoácidos , Cilióforos , Aminoácidos/genética , Sequência de Aminoácidos , Código Genético , Cilióforos/genética , Códon de Terminação
2.
Heredity (Edinb) ; 130(5): 269-277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944856

RESUMO

Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.


Assuntos
DNA Mitocondrial , Genômica , Humanos , Animais , Polônia , Filogenia , DNA Mitocondrial/genética , Arvicolinae/genética , Variação Genética
3.
BMC Genomics ; 23(1): 42, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012468

RESUMO

BACKGROUND: Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line SH-SY5Y, and to characterise isoform expression and usage across differentiation. RESULTS: We identify many previously unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene, CACNA2D2. We show differential expression and usage of transcripts during differentiation identifying candidates for future research into state change regulation. CONCLUSIONS: Our work highlights the potential of long read sequencing to uncover previously unknown transcript diversity and mechanisms influencing alternative splicing.


Assuntos
Nanoporos , Splicing de RNA , Processamento Alternativo , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isoformas de Proteínas/genética
4.
Mol Biol Evol ; 37(4): 1056-1069, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808937

RESUMO

We know from human genetic studies that practically all aspects of biology are strongly influenced by the genetic background, as reflected in the advent of "personalized medicine." Yet, with few exceptions, this is not taken into account when using laboratory populations as animal model systems for research in these fields. Laboratory strains of zebrafish (Danio rerio) are widely used for research in vertebrate developmental biology, behavior, and physiology, for modeling diseases, and for testing pharmaceutic compounds in vivo. However, all of these strains are derived from artificial bottleneck events and therefore are likely to represent only a fraction of the genetic diversity present within the species. Here, we use restriction site-associated DNA sequencing to genetically characterize wild populations of zebrafish from India, Nepal, and Bangladesh, and to compare them to previously published data on four common laboratory strains. We measured nucleotide diversity, heterozygosity, and allele frequency spectra, and find that wild zebrafish are much more diverse than laboratory strains. Further, in wild zebrafish, there is a clear signal of GC-biased gene conversion that is missing in laboratory strains. We also find that zebrafish populations in Nepal and Bangladesh are most distinct from all other strains studied, making them an attractive subject for future studies of zebrafish population genetics and molecular ecology. Finally, isolates of the same strains kept in different laboratories show a pattern of ongoing differentiation into genetically distinct substrains. Together, our findings broaden the basis for future genetic, physiological, pharmaceutic, and evolutionary studies in Danio rerio.


Assuntos
Animais Selvagens/genética , Domesticação , Variação Genética , Genoma , Peixe-Zebra/genética , Animais , Animais Endogâmicos , Frequência do Gene
5.
BMC Genet ; 21(1): 36, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209049

RESUMO

Following publication of the original article [1], it has been brought to the authors' attention that in their paper (Rodrigues et al. 2016) they reported the genome size based on 2C values (diploid genome) when it is more common to present it as 1C value.

6.
RNA ; 22(6): 839-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27022035

RESUMO

RNA-seq is now the technology of choice for genome-wide differential gene expression experiments, but it is not clear how many biological replicates are needed to ensure valid biological interpretation of the results or which statistical tools are best for analyzing the data. An RNA-seq experiment with 48 biological replicates in each of two conditions was performed to answer these questions and provide guidelines for experimental design. With three biological replicates, nine of the 11 tools evaluated found only 20%-40% of the significantly differentially expressed (SDE) genes identified with the full set of 42 clean replicates. This rises to >85% for the subset of SDE genes changing in expression by more than fourfold. To achieve >85% for all SDE genes regardless of fold change requires more than 20 biological replicates. The same nine tools successfully control their false discovery rate at ≲5% for all numbers of replicates, while the remaining two tools fail to control their FDR adequately, particularly for low numbers of replicates. For future RNA-seq experiments, these results suggest that at least six biological replicates should be used, rising to at least 12 when it is important to identify SDE genes for all fold changes. If fewer than 12 replicates are used, a superior combination of true positive and false positive performances makes edgeR and DESeq2 the leading tools. For higher replicate numbers, minimizing false positives is more important and DESeq marginally outperforms the other tools.


Assuntos
Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , RNA Fúngico/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
7.
Mol Ecol ; 27(5): 1214-1228, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29134729

RESUMO

Within the plant kingdom, many genera contain sister lineages with contrasting outcrossing and inbreeding mating systems that are known to hybridize. The evolutionary fate of these sister lineages is likely to be influenced by the extent to which they exchange genes. We measured gene flow between outcrossing Geum rivale and selfing Geum urbanum, sister species that hybridize in contemporary populations. We generated and used a draft genome of G. urbanum to develop dd-RAD data scorable in both species. Coalescent analysis of RAD data from allopatric populations indicated that the species diverged 2-3 Mya, and that historical gene flow between them was extremely low (1 migrant every 25 generations). Comparison of genetic divergence between species in sympatry and allopatry, together with an analysis of allele frequencies in potential parental and hybrid populations, provided no evidence of contemporary introgression in sympatric populations. Cluster- and species-specific marker analyses revealed that, apart from four early-generation hybrids, individuals in sympatric populations fell into two genetically distinct groups that corresponded exactly to their morphological species classification with maximum individual admixture estimates of only 1-3%. However, we did observe joint segregation of four putatively introgressed SNPs across two scaffolds in the G. urbanum population that was associated with significant morphological variation, interpreted as tentative evidence for rare, recent interspecific gene flow. Overall, our results indicate that despite the presence of hybrids in contemporary populations, genetic exchange between G. rivale and G. urbanum has been extremely limited throughout their evolutionary history.


Assuntos
Geum/genética , Hibridização Genética , Análise por Conglomerados , Fluxo Gênico , Marcadores Genéticos , Genoma de Planta , Geum/fisiologia , Endogamia , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Seleção Genética , Especificidade da Espécie
9.
Mol Ecol ; 26(15): 3883-3897, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488293

RESUMO

Understanding the boundaries of breeding populations is of great importance for conservation efforts and estimates of extinction risk for threatened species. However, determining these boundaries can be difficult when population structure is subtle. Emperor penguins are highly reliant on sea ice, and some populations may be in jeopardy as climate change alters sea-ice extent and quality. An understanding of emperor penguin population structure is therefore urgently needed. Two previous studies have differed in their conclusions, particularly whether the Ross Sea, a major stronghold for the species, is isolated or not. We assessed emperor penguin population structure using 4,596 genome-wide single nucleotide polymorphisms (SNPs), characterized in 110 individuals (10-16 per colony) from eight colonies around Antarctica. In contrast to a previous conclusion that emperor penguins are panmictic around the entire continent, we find that emperor penguins comprise at least four metapopulations, and that the Ross Sea is clearly a distinct metapopulation. Using larger sample sizes and a thorough assessment of the limitations of different analytical methods, we have shown that population structure within emperor penguins does exist and argue that its recognition is vital for the effective conservation of the species. We discuss the many difficulties that molecular ecologists and managers face in the detection and interpretation of subtle population structure using large SNP data sets, and argue that subtle structure should be taken into account when determining management strategies for threatened species, until accurate estimates of demographic connectivity among populations can be made.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Mudança Climática , Camada de Gelo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
10.
Mol Ecol ; 26(1): 43-58, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27552184

RESUMO

Host-associated races of phytophagous insects provide a model for understanding how adaptation to a new environment can lead to reproductive isolation and speciation, ultimately enabling us to connect barriers to gene flow to adaptive causes of divergence. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on legume species and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. As host choice produces assortative mating, understanding the underlying mechanisms of choice will contribute directly to understanding of speciation. As host choice in the pea aphid is likely mediated by smell and taste, we use capture sequencing and SNP genotyping to test for the role of chemosensory genes in the divergence between eight host plant species across the continuum of differentiation and sampled at multiple locations across western Europe. We show high differentiation of chemosensory loci relative to control loci in a broad set of pea aphid races and localities, using a model-free approach based on principal component analysis. Olfactory and gustatory receptors form the majority of highly differentiated genes and include loci that were already identified as outliers in a previous study focusing on the three most closely related host races. Consistent indications that chemosensory genes may be good candidates for local adaptation and barriers to gene flow in the pea aphid open the way to further investigations aiming to understand their impact on gene flow and to determine their precise functions in response to host plant metabolites.


Assuntos
Afídeos/genética , Fluxo Gênico , Receptores Odorantes/genética , Isolamento Reprodutivo , Adaptação Biológica/genética , Animais , Europa (Continente) , Fabaceae , Genes de Insetos , Genótipo , Polimorfismo de Nucleotídeo Único
11.
BMC Evol Biol ; 16(1): 211, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733109

RESUMO

BACKGROUND: Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. RESULTS: We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. CONCLUSIONS: The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators across the Southern Ocean are revealing more interconnection and migration than previously supposed.


Assuntos
Migração Animal/fisiologia , Ecossistema , Genética Populacional , Spheniscidae/genética , Animais , Regiões Antárticas , Teorema de Bayes , Análise por Conglomerados , Análise Discriminante , Variação Genética , Técnicas de Genotipagem , Geografia , Filogeografia , Densidade Demográfica , Análise de Componente Principal
12.
Mol Biol Evol ; 32(1): 63-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25234705

RESUMO

Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation.


Assuntos
Afídeos/classificação , Afídeos/genética , Variações do Número de Cópias de DNA , Fabaceae/fisiologia , Proteínas de Insetos/genética , Simbiose , Adaptação Biológica , Animais , Afídeos/fisiologia , Biologia Computacional/métodos , Evolução Molecular , Fabaceae/classificação , Especiação Genética , Variação Genética , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Receptores Odorantes/genética , Análise de Sequência de DNA
13.
Bioinformatics ; 31(1): 114-5, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25173419

RESUMO

MOTIVATION: The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. RESULTS: Here we present poRe, a package for R that enables users to manipulate, organize, summarize and visualize MinION nanopore sequencing data. As a package for R, poRe has been tested on Windows, Linux and MacOSX. Crucially, the Windows version allows users to analyse MinION data on the Windows laptop attached to the device. AVAILABILITY AND IMPLEMENTATION: poRe is released as a package for R at http://sourceforge.net/projects/rpore/. A tutorial and further information are available at https://sourceforge.net/p/rpore/wiki/Home/.


Assuntos
Biologia Computacional/métodos , Nanoporos , Análise de Sequência de DNA/métodos , Software , Análise de Sequência de DNA/normas
14.
Bioinformatics ; 31(22): 3625-30, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206307

RESUMO

MOTIVATION: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. RESULTS: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. AVAILABILITY AND IMPLEMENTATION: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. CONTACT: g.j.barton@dundee.ac.uk.


Assuntos
Modelos Estatísticos , Análise de Sequência de RNA/métodos , Sequência de Bases , Distribuição Binomial , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
15.
Mol Ecol ; 25(17): 4197-215, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27474484

RESUMO

Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change.


Assuntos
Adaptação Fisiológica/genética , Afídeos/genética , Fabaceae , Genética Populacional , Animais , Meio Ambiente , Deriva Genética , Fenótipo , Isolamento Reprodutivo , Seleção Genética , Transcriptoma
16.
BMC Genet ; 17(1): 144, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846816

RESUMO

BACKGROUND: Colour polymorphisms are common among animal species. When combined with genetic and ecological data, these polymorphisms can be excellent systems in which to understand adaptation and the molecular changes underlying phenotypic evolution. The meadow spittlebug, Philaenus spumarius (L.) (Hemiptera, Aphrophoridae), a widespread insect species in the Holarctic region, exhibits a striking dorsal colour/pattern balanced polymorphism. Although experimental crosses have revealed the Mendelian inheritance of this trait, its genetic basis remains unknown. In this study we aimed to identify candidate genomic regions associated with the colour balanced polymorphism in this species. RESULTS: By using restriction site-associated DNA (RAD) sequencing we were able to obtain a set of 1,837 markers across 33 individuals to test for associations with three dorsal colour phenotypes (typicus, marginellus, and trilineatus). Single and multi-association analyses identified a total of 60 SNPs associated with dorsal colour morphs. The genome size of P. spumarius was estimated by flow cytometry, revealing a 5.3 Gb genome, amongst the largest found in insects. A partial genome assembly, representing 24% of the total size, and an 81.4 Mb transcriptome, were also obtained. From the SNPs found to be associated with colour, 35% aligned to the genome and 10% to the transcriptome. Our data suggested that major loci, consisting of multi-genomic regions, may be involved in dorsal colour variation among the three dorsal colour morphs analysed. However, no homology was found between the associated loci and candidate genes known to be responsible for coloration pattern in other insect species. The associated markers showed stronger differentiation of the trilineatus colour phenotype, which has been shown previously to be more differentiated in several life-history and physiological characteristics as well. It is possible that colour variation and these traits are linked in a complex genetic architecture. CONCLUSIONS: The loci detected to have an association with colour and the genomic and transcriptomic resources developed here constitute a basis for further research on the genetic basis of colour pattern in the meadow spittlebug P. spumarius.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Hemípteros/genética , Locos de Características Quantitativas , Animais , Estudos de Associação Genética/métodos , Tamanho do Genoma , Proteínas de Insetos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele
17.
Genet Sel Evol ; 48(1): 47, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357694

RESUMO

BACKGROUND: Sea lice have significant negative economic and welfare impacts on marine Atlantic salmon farming. Since host resistance to sea lice has a substantial genetic component, selective breeding can contribute to control of lice. Genomic selection uses genome-wide marker information to predict breeding values, and can achieve markedly higher accuracy than pedigree-based methods. Our aim was to assess the genetic architecture of host resistance to sea lice, and test the utility of genomic prediction of breeding values. Individual lice counts were measured in challenge experiments using two large Atlantic salmon post-smolt populations from a commercial breeding programme, which had genotypes for ~33 K single nucleotide polymorphisms (SNPs). The specific objectives were to: (i) estimate the heritability of host resistance; (ii) assess its genetic architecture by performing a genome-wide association study (GWAS); (iii) assess the accuracy of predicted breeding values using varying SNP densities (0.5 to 33 K) and compare it to that of pedigree-based prediction; and (iv) evaluate the accuracy of prediction in closely and distantly related animals. RESULTS: Heritability of host resistance was significant (0.22 to 0.33) in both populations using either pedigree or genomic relationship matrices. The GWAS suggested that lice resistance is a polygenic trait, and no genome-wide significant quantitative trait loci were identified. Based on cross-validation analysis, genomic predictions were more accurate than pedigree-based predictions for both populations. Although prediction accuracies were highest when closely-related animals were used in the training and validation sets, the benefit of having genomic-versus pedigree-based predictions within a population increased as the relationships between training and validation sets decreased. Prediction accuracy reached an asymptote with a SNP density of ~5 K within populations, although higher SNP density was advantageous for cross-population prediction. CONCLUSIONS: Host resistance to sea lice in farmed Atlantic salmon has a significant genetic component. Phenotypes relating to host resistance can be predicted with moderate to high accuracy within populations, with a major advantage of genomic over pedigree-based methods, even at relatively sparse SNP densities. Prediction accuracies across populations were low, but improved with higher marker densities. Genomic selection can contribute to lice control in salmon farming.


Assuntos
Copépodes , Resistência à Doença/genética , Doenças dos Peixes/genética , Herança Multifatorial , Salmo salar/genética , Animais , Aquicultura , Cruzamento , Doenças dos Peixes/parasitologia , Estudo de Associação Genômica Ampla , Genótipo , Modelos Genéticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Salmo salar/parasitologia
18.
BMC Genomics ; 16: 1007, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607231

RESUMO

BACKGROUND: The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. RESULTS: We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. CONCLUSIONS: Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Atum/genética , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , DNA Complementar , Perfilação da Expressão Gênica , Biblioteca Gênica , Genômica , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transcriptoma
19.
BMC Genomics ; 16: 969, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26582102

RESUMO

BACKGROUND: The genetic architecture of complex traits in farmed animal populations is of interest from a scientific and practical perspective. The use of genetic markers to predict the genetic merit (breeding values) of individuals is commonplace in modern farm animal breeding schemes. Recently, high density SNP arrays have become available for Atlantic salmon, which facilitates genomic prediction and association studies using genome-wide markers and economically important traits. The aims of this study were (i) to use a high density SNP array to investigate the genetic architecture of weight and length in juvenile Atlantic salmon; (ii) to assess the utility of genomic prediction for these traits, including testing different marker densities; (iii) to identify potential candidate genes underpinning variation in early growth. RESULTS: A pedigreed population of farmed Atlantic salmon (n = 622) were measured for weight and length traits at one year of age, and genotyped for 111,908 segregating SNP markers using a high density SNP array. The heritability of both traits was estimated using pedigree and genomic relationship matrices, and was comparable at around 0.5 and 0.6 respectively. The results of the GWA analysis pointed to a polygenic genetic architecture, with no SNPs surpassing the genome-wide significance threshold, and one SNP associated with length at the chromosome-wide level. SNPs surpassing an arbitrary threshold of significance (P < 0.005, ~ top 0.5 % of markers) were aligned to an Atlantic salmon reference transcriptome, identifying 109 SNPs in transcribed regions that were annotated by alignment to human, mouse and zebrafish protein databases. Prediction of breeding values was more accurate when applying genomic (GBLUP) than pedigree (PBLUP) relationship matrices (accuracy ~ 0.7 and 0.58 respectively) and 5,000 SNPs were sufficient for obtaining this accuracy increase over PBLUP in this specific population. CONCLUSIONS: The high density SNP array can effectively capture the additive genetic variation in complex traits. However, the traits of weight and length both appear to be very polygenic with only one SNP surpassing the chromosome-wide threshold. Genomic prediction using the array is effective, leading to an improvement in accuracy compared to pedigree methods, and this improvement can be achieved with only a small subset of the markers in this population. The results have practical relevance for genomic selection in salmon and may also provide insight into variation in the identified genes underpinning body growth and development in salmonid species.


Assuntos
Aquicultura , Estudo de Associação Genômica Ampla , Genômica , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Animais , Cruzamento , Marcadores Genéticos/genética , Humanos , Camundongos , Transcrição Gênica
20.
BMC Genomics ; 16: 171, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25888226

RESUMO

BACKGROUND: Fish species often exhibit significant sexual dimorphism for commercially important traits. Accordingly, the control of phenotypic sex, and in particular the production of monosex cultures, is of particular interest to the aquaculture industry. Sex determination in the widely farmed Nile tilapia (Oreochromis niloticus) is complex, involving genomic regions on at least three chromosomes (chromosomes 1, 3 and 23) and interacting in certain cases with elevated early rearing temperature as well. Thus, sex ratios may vary substantially from 50%. RESULTS: This study focused on mapping sex-determining quantitative trait loci (QTL) in families with skewed sex ratios. These included four families that showed an excess of males (male ratio varied between 64% and 93%) when reared at standard temperature (28°C) and a fifth family in which an excess of males (96%) was observed when fry were reared at 36°C for ten days from first feeding. All the samples used in the current study were genotyped for two single-nucleotide polymorphisms (rs397507167 and rs397507165) located in the expected major sex-determining region in linkage group 1 (LG 1). The only misassigned individuals were phenotypic males with the expected female genotype, suggesting that those offspring had undergone sex-reversal with respect to the major sex-determining locus. We mapped SNPs identified from double digest Restriction-site Associated DNA (ddRAD) sequencing in these five families. Three genetic maps were constructed consisting of 641, 175 and 1,155 SNPs from the three largest families. QTL analyses provided evidence for a novel genome-wide significant QTL in LG 20. Evidence was also found for another sex-determining QTL in the fifth family, in the proximal region of LG 1. CONCLUSIONS: Overall, the results from this study suggest that these previously undetected QTLs are involved in sex determination in the Nile tilapia, causing sex reversal (masculinisation) with respect to the XX genotype at the major sex-determining locus in LG 1.


Assuntos
Ciclídeos/genética , Locos de Características Quantitativas , Processos de Determinação Sexual , Animais , Mapeamento Cromossômico , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Razão de Masculinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa