Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Respir J ; 57(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33060150

RESUMO

Pulmonary hypertension is a condition with limited effective treatment options. Chronic thromboembolic pulmonary hypertension (CTEPH) is a notable exception, with pulmonary endarterectomy (PEA) often proving curative. This study investigated the plasma metabolome of CTEPH patients, estimated reversibility to an effective treatment and explored the source of metabolic perturbations.We performed untargeted analysis of plasma metabolites in CTEPH patients compared to healthy controls and disease comparators. Changes in metabolic profile were evaluated in response to PEA. A subset of patients were sampled at three anatomical locations and plasma metabolite gradients calculated.We defined and validated altered plasma metabolite profiles in patients with CTEPH. 12 metabolites were confirmed by receiver operating characteristic analysis to distinguish CTEPH and both healthy (area under the curve (AUC) 0.64-0.94, all p<2×10-5) and disease controls (AUC 0.58-0.77, all p<0.05). Many of the metabolic changes were notably similar to those observed in idiopathic pulmonary arterial hypertension (IPAH). Only five metabolites (5-methylthioadenosine, N1-methyladenosine, N1-methylinosine, 7-methylguanine, N-formylmethionine) distinguished CTEPH from chronic thromboembolic disease or IPAH. Significant corrections (15-100% of perturbation) in response to PEA were observed in some, but not all metabolites. Anatomical sampling identified 188 plasma metabolites, with significant gradients in tryptophan, sphingomyelin, methionine and Krebs cycle metabolites. In addition, metabolites associated with CTEPH and gradients showed significant associations with clinical measures of disease severity.We identified a specific metabolic profile that distinguishes CTEPH from controls and disease comparators, despite the observation that most metabolic changes were common to both CTEPH and IPAH patients. Plasma metabolite gradients implicate cardiopulmonary tissue metabolism of metabolites associated with pulmonary hypertension and metabolites that respond to PEA surgery could be a suitable noninvasive marker for evaluating future targeted therapeutic interventions.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Doença Crônica , Endarterectomia , Hipertensão Pulmonar Primária Familiar , Humanos , Metabolômica , Embolia Pulmonar/complicações
2.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545648

RESUMO

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Assuntos
Ativação do Complemento/imunologia , Fibroblastos/imunologia , Hipertensão Pulmonar/imunologia , Imunoglobulina G/imunologia , Remodelação Vascular/imunologia , Animais , Complemento C3/imunologia , Complemento C5/imunologia , Fator B do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Imunoglobulinas/imunologia , Inflamação , Camundongos , Camundongos Knockout , Prognóstico , Hipertensão Arterial Pulmonar/imunologia , Ratos
3.
Thorax ; 74(4): 380-389, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30478197

RESUMO

BACKGROUND: Aberrant lipoprotein metabolism has been implicated in experimental pulmonary hypertension, but the relevance to patients with pulmonary arterial hypertension (PAH) is inconclusive. OBJECTIVE: To investigate the relationship between circulating lipoprotein subclasses and survival in patients with PAH. METHODS: Using nuclear magnetic resonance spectroscopy, 105 discrete lipoproteins were measured in plasma samples from two cohorts of patients with idiopathic or heritable PAH. Data from 1124 plasma proteins were used to identify proteins linked to lipoprotein subclasses. The physical presence of proteins was confirmed in plasma lipoprotein subfractions separated by ultracentrifugation. RESULTS: Plasma levels of three lipoproteins from the small high-density lipoprotein (HDL) subclass, termed HDL-4, were inversely related to survival in both the discovery (n=127) and validation (n=77) cohorts, independent of exercise capacity, comorbidities, treatment, N-terminal probrain natriuretic peptide, C reactive protein and the principal lipoprotein classes. The small HDL subclass rich in apolipoprotein A-2 content (HDL-4-Apo A-2) exhibited the most significant association with survival. None of the other lipoprotein classes, including principal lipoprotein classes HDL and low-density lipoprotein cholesterol, were prognostic. Three out of nine proteins identified to associate with HDL-4-Apo A-2 are involved in the regulation of fibrinolysis, namely, the plasmin regulator, alpha-2-antiplasmin, and two major components of the kallikrein-kinin pathway (coagulation factor XI and prekallikrein), and their physical presence in the HDL-4 subfraction was confirmed. CONCLUSION: Reduced plasma levels of small HDL particles transporting fibrinolytic proteins are associated with poor outcomes in patients with idiopathic and heritable PAH.


Assuntos
Hipertensão Pulmonar/sangue , Lipoproteínas HDL/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Fibrinólise/fisiologia , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Estimativa de Kaplan-Meier , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Prognóstico , Proteoma
4.
Circulation ; 135(5): 460-475, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-27881557

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. METHODS: We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. RESULTS: Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. CONCLUSIONS: Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients.


Assuntos
Hipertensão Pulmonar/genética , Metabolômica/métodos , RNA de Transferência/metabolismo , Adulto , Idoso , Metabolismo Energético , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto Jovem
5.
Eur Heart J Cardiovasc Imaging ; 20(6): 668-676, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535300

RESUMO

AIMS: We sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress. METHODS AND RESULTS: In 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function-including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (ß = 0.29) and reduced relative wall thickness (ß = -0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (ß = 0.28-0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (ß = -0.40) of sulfated androgen. CONCLUSION: Using computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.


Assuntos
Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/fisiopatologia , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética/métodos , Disfunção Ventricular Direita/diagnóstico por imagem , Remodelação Ventricular/fisiologia , Adaptação Fisiológica , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Hipertensão Pulmonar/mortalidade , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Análise Multivariada , Valores de Referência , Análise de Regressão , Estudos Retrospectivos , Índice de Gravidade de Doença , Análise de Sobrevida , Disfunção Ventricular Direita/mortalidade , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia
6.
Cancer Genet Cytogenet ; 179(2): 89-92, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18036394

RESUMO

High-penetrance autosomal dominant cancer susceptibility genes such as BRCA2 and MEN1 result in specific patterns of cancers in individuals who inherit germline mutations. Their incidence in the population is relatively low, however, and it is highly unusual to identify individuals with two or more inherited cancer gene mutations. We describe a family with multiple cases of MEN1-associated cancers as well as pancreatic adenocarcinoma, ovarian cancer, and male breast cancer, in which we identified germline mutations in both MEN1 and BRCA2. To our knowledge, this is the first report of a patient with both MEN1 and BRCA2 mutations and with a personal history of hyperparathyroidism and pancreatic neuroendocrine tumors.


Assuntos
Carcinoma Neuroendócrino/genética , Genes BRCA2 , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Hipertireoidismo/complicações , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma/genética , Adulto , Carcinoma Neuroendócrino/complicações , Saúde da Família , Feminino , Heterozigoto , Humanos , Hipertireoidismo/diagnóstico , Neoplasia Endócrina Múltipla/genética , Linhagem
7.
Lancet Respir Med ; 5(9): 717-726, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28624389

RESUMO

BACKGROUND: Idiopathic and heritable pulmonary arterial hypertension form a rare but molecularly heterogeneous disease group. We aimed to measure and validate differences in plasma concentrations of proteins that are associated with survival in patients with idiopathic or heritable pulmonary arterial hypertension to improve risk stratification. METHODS: In this observational cohort study, we enrolled patients with idiopathic or heritable pulmonary arterial hypertension from London (UK; cohorts 1 and 2), Giessen (Germany; cohort 3), and Paris (France; cohort 4). Blood samples were collected at routine clinical appointment visits, clinical data were collected within 30 days of blood sampling, and biochemical data were collected within 7 days of blood sampling. We used an aptamer-based assay of 1129 plasma proteins, and patient clinical details were concealed to the technicians. We identified a panel of prognostic proteins, confirmed with alternative targeted assays, which we evaluated against the established prognostic risk equation for pulmonary arterial hypertension derived from the REVEAL registry. All-cause mortality was the primary endpoint. FINDINGS: 20 proteins differentiated survivors and non-survivors in 143 consecutive patients with idiopathic or heritable pulmonary arterial hypertension with 2 years' follow-up (cohort 1) and in a further 75 patients with 2·5 years' follow-up (cohort 2). Nine proteins were both prognostic independent of plasma NT-proBNP concentrations and confirmed by targeted assays. The functions of these proteins relate to myocardial stress, inflammation, pulmonary vascular cellular dysfunction and structural dysregulation, iron status, and coagulation. A cutoff-based score using the panel of nine proteins provided prognostic information independent of the REVEAL equation, improving the C statistic from area under the curve 0·83 (for REVEAL risk score, 95% CI 0·77-0·89; p<0·0001) to 0·91 (for panel and REVEAL 0·87-0·96; p<0·0001) and improving reclassification indices without detriment to calibration. Poor survival was preceded by an adverse change in panel score in paired samples from 43 incident patients with pulmonary arterial hypertension in cohort 3 (p=0·0133). The protein panel was validated in 93 patients with idiopathic or heritable pulmonary arterial hypertension in cohort 4, with 4·4 years' follow-up and improved risk estimates, providing complementary information to the clinical risk equation. INTERPRETATION: A combination of nine circulating proteins identifies patients with pulmonary arterial hypertension with a high risk of mortality, independent of existing clinical assessments, and might have a use in clinical management and the evaluation of new therapies. FUNDING: National Institute for Health Research, Wellcome Trust, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, Inserm, Université Paris-Sud, and Agence Nationale de la Recherche.


Assuntos
Proteínas Sanguíneas/análise , Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão/sangue , Proteoma/análise , Adulto , Idoso , Pressão Arterial , Biomarcadores/sangue , Estudos de Coortes , Hipertensão Pulmonar Primária Familiar/mortalidade , Feminino , Humanos , Hipertensão/mortalidade , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
8.
Pharmacol Ther ; 164: 195-203, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133570

RESUMO

The past three decades have witnessed a welcome expansion of the therapeutic armamentarium for the management of pulmonary arterial hypertension (PAH). However, against this backdrop, there have been some notable disappointments in drug development. Here we use these as case studies to emphasize the importance of informed drug target selection, the early evaluation of dose-response relationships in human studies, and the value of the deep phenotyping of patients in clinical studies to better understand inter-individual variation in patient response. The integration of "omics" technologies and advanced clinical imaging offer the potential to reduce the risk, and so cost, of drug development in PAH and bring much needed new medicines to those patients most likely to benefit with greater efficiency.


Assuntos
Estudos Clínicos como Assunto/métodos , Hipertensão Pulmonar/tratamento farmacológico , Animais , Biomarcadores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Lisurida/análogos & derivados , Lisurida/farmacologia , Fenótipo , Fentolamina/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa