Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103971

RESUMO

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Assuntos
Quinase do Fator 2 de Elongação , Biossíntese de Proteínas , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fosforilação , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(17): e2300902120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068230

RESUMO

Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.


Assuntos
Calmodulina , Quinase do Fator 2 de Elongação , Quinase do Fator 2 de Elongação/metabolismo , Calmodulina/metabolismo , Regulação Alostérica , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosforilação , Eucariotos/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737836

RESUMO

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Assuntos
Proteínas de Escherichia coli , Fosfoproteínas Fosfatases , Proteínas Tirosina Quinases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo
4.
J Biol Chem ; 299(1): 102737, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423682

RESUMO

BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.


Assuntos
Proteínas de Bactérias , Monoéster Fosfórico Hidrolases , Proteínas Tirosina Quinases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Polissacarídeos , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo , Proteínas de Bactérias/metabolismo
5.
J Biol Chem ; 299(6): 104813, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172726

RESUMO

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Assuntos
Trifosfato de Adenosina , Calmodulina , Quinase do Fator 2 de Elongação , Animais , Humanos , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Domínio Catalítico , Relação Estrutura-Atividade , Elongação Traducional da Cadeia Peptídica
6.
Nucleic Acids Res ; 49(17): 9607-9624, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33880546

RESUMO

Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2'-PO4 to NAD+ yielding RNA 2'-OH and ADP-ribose-1',2'-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 µM), ADP-ribose (∼96 µM) and ADP (∼123 µM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2'-PO4 (mimicking the substrate RNA 2'-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ ß-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.


Assuntos
Proteínas de Bactérias/química , Cytophagaceae/enzimologia , NAD/química , Fosfotransferases/química , Apoenzimas/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligantes , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/química , Fosfotransferases/genética , Ligação Proteica , Conformação Proteica , RNA/metabolismo
7.
J Biol Chem ; 295(25): 8492-8493, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561554

RESUMO

The malaria parasite Plasmodium falciparum encodes a cGMP-dependent protein kinase G (PfPKG) that is critical for its life cycle. Specific cGMP analogs are able to act as partial agonists of PfPKG. Using the exquisite diagnostic power of NMR chemical shifts, Byun et al. demonstrate that the extent of agonism by these cGMP derivatives relates to the degree of stabilization of a unique inactive conformation that shares structural features with both the ligand-free, inactive and the cGMP-bound, active states. The observation of this third state helps to generalize a novel paradigm for the allosteric activation of kinase function and may open opportunities for the development of novel therapeutics.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , Plasmodium falciparum , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estágios do Ciclo de Vida , Plasmodium falciparum/metabolismo , Ligação Proteica
8.
Biochemistry ; 59(36): 3290-3299, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786415

RESUMO

Cold unfolding of proteins is predicted by the Gibbs-Helmholtz equation and is thought to be driven by a strongly temperature-dependent interaction of protein nonpolar groups with water. Studies of the cold-unfolded state provide insight into protein energetics, partially structured states, and folding cooperativity and are of practical interest in biotechnology. However, structural characterization of the cold-unfolded state is much less extensive than studies of thermally or chemically denatured unfolded states, in large part because the midpoint of the cold unfolding transition is usually below freezing. We exploit a rationally designed point mutation (I98A) in the hydrophobic core of the C-terminal domain of the ribosomal protein L9 that allows the cold denatured state ensemble to be observed above 0 °C at near neutral pH and ambient pressure in the absence of added denaturants. A combined approach consisting of paramagnetic relaxation enhancement measurements, analysis of small-angle X-ray scattering data, all-atom simulations, and polymer theory provides a detailed description of the cold-unfolded state. Despite a globally expanded ensemble, as determined by small-angle X-ray scattering, sequence-specific medium- and long-range interactions in the cold-unfolded state give rise to deviations from homopolymer-like behavior. Our results reveal that the cold-denatured state is heterogeneous with local and long-range intramolecular interactions that may prime the folded state and also demonstrate that significant long-range interactions are compatible with expanded unfolded ensembles. The work also highlights the limitations of homopolymer-based descriptions of unfolded states of proteins.


Assuntos
Modelos Moleculares , Mutação Puntual , Dobramento de Proteína , Proteínas Ribossômicas/química , Temperatura Baixa , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Proc Natl Acad Sci U S A ; 114(31): E6287-E6296, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716922

RESUMO

Mitogen-activated protein (MAP) kinase substrates are believed to require consensus docking motifs (D-site, F-site) to engage and facilitate efficient site-specific phosphorylation at specific serine/threonine-proline sequences by their cognate kinases. In contrast to other MAP kinase substrates, the transcription factor Ets-1 has no canonical docking motifs, yet it is efficiently phosphorylated by the MAP kinase ERK2 at a consensus threonine site (T38). Using NMR methodology, we demonstrate that this phosphorylation is enabled by a unique bipartite mode of ERK2 engagement by Ets-1 and involves two suboptimal noncanonical docking interactions instead of a single canonical docking motif. The N terminus of Ets-1 interacts with a part of the ERK2 D-recruitment site that normally accommodates the hydrophobic sidechains of a canonical D-site, retaining a significant degree of disorder in its ERK2-bound state. In contrast, the C-terminal region of Ets-1, including its Pointed (PNT) domain, engages in a largely rigid body interaction with a section of the ERK2 F-recruitment site through a binding mode that deviates significantly from that of a canonical F-site. This latter interaction is notable for the destabilization of a flexible helix that bridges the phospho-acceptor site to the rigid PNT domain. These two spatially distinct, individually weak docking interactions facilitate the highly specific recognition of ERK2 by Ets-1, and enable the optimal localization of its dynamic phospho-acceptor T38 at the kinase active site to enable efficient phosphorylation.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Reguladoras de Apoptose , Sítios de Ligação/fisiologia , Catálise , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Ressonância Magnética Nuclear Biomolecular/métodos , Fosfoproteínas/química , Ligação Proteica/fisiologia , Conformação Proteica , Proteína Proto-Oncogênica c-ets-1/genética
10.
Mol Carcinog ; 58(9): 1551-1570, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31190430

RESUMO

Extracellular signal-regulated kinase 1/2 (ERK1/2) constitute a point of convergence for complex signaling events that regulate essential cellular processes, including proliferation and survival. As such, dysregulation of the ERK signaling pathway is prevalent in many cancers. In the case of BRAF-V600E mutant melanoma, ERK inhibition has emerged as a viable clinical approach to abrogate signaling through the ERK pathway, even in cases where MEK and Raf inhibitor treatments fail to induce tumor regression due to resistance mechanisms. Several ERK inhibitors that target the active site of ERK have reached clinical trials, however, many critical ERK interactions occur at other potentially druggable sites on the protein. Here we discuss the role of ERK signaling in cell fate, in driving melanoma, and in resistance mechanisms to current BRAF-V600E melanoma treatments. We explore targeting ERK via a distinct site of protein-protein interaction, known as the D-recruitment site (DRS), as an alternative or supplementary mode of ERK pathway inhibition in BRAF-V600E melanoma. Targeting the DRS with inhibitors in melanoma has the potential to not only disrupt the catalytic apparatus of ERK but also its noncatalytic functions, which have significant impacts on spatiotemporal signaling dynamics and cell fate.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Domínio Catalítico/genética , Humanos , Melanoma/genética , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Methods ; 148: 100-114, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857193

RESUMO

Measurement of nuclear spin relaxation provides a powerful approach to access information about biomolecular conformational dynamics over several orders of magnitude in timescale. In several cases this knowledge in combination with spatial information from three-dimensional structures yields unique insight into protein stability and the kinetics and thermodynamics of their interactions and function. However, due to intrinsic difficulties in studying large systems using solution state nuclear magnetic resonance (NMR) approaches, until recently these measurements were limited to small-to-medium-sized systems. However, the development of a wide range of novel strategies that allow the selective isotope labeling of methyl groups in proteins have allowed the exploitation of the unique relaxation properties of this spin-system. This has in turn enabled the extension of NMR approaches to high molecular weight proteins including a variety of enzymes and their complexes. Here, we recount our experiences in obtaining assignments of the methyl resonances for two representative members of a class of RNA-directed RNA polymerases (RdRps) encoded by bacteriophages of the Cystoviridae family. We demonstrate the utility of these methyl probes, limited in number for one case and more numerous for the other, to investigate the conformational dynamics of RdRps on the fast (ps-ns) and slow (µs-ms) timescales.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , RNA Viral/análise , RNA Viral/química , RNA Polimerase Dependente de RNA/análise , RNA Polimerase Dependente de RNA/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Metilação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Biochemistry ; 57(10): 1568-1571, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29465229

RESUMO

While solid-state nuclear magnetic resonance (ssNMR) has emerged as a powerful technique for studying viral capsids, current studies are limited to capsids formed from single proteins or single polyproteins. The ability to selectively label individual protein components within multiprotein viral capsids and the resulting spectral simplification will facilitate the extension of ssNMR techniques to complex viruses. In vitro capsid assembly by combining individually purified, labeled, and unlabeled components in NMR quantities is not a viable option for most viruses. To overcome this barrier, we present a method that utilizes sequential protein expression and in cell assembly of component-specifically labeled viral capsids in amounts suitable for NMR studies. We apply this approach to purify capsids of bacteriophage ϕ6 isotopically labeled on only one of its four constituent protein components, the NTPase P4. Using P4-labeled ϕ6 capsids and the sensitivity enhancement provided by dynamic nuclear polarization, we illustrate the utility of this method to enable ssNMR studies of complex viruses.


Assuntos
Capsídeo/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Virais/metabolismo , Montagem de Vírus , Bacteriófago phi 6 , Microscopia Eletrônica de Transmissão
13.
J Biol Chem ; 292(5): 2032-2045, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956550

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Substituição de Aminoácidos , Calmodulina/genética , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/genética , Humanos , Mutação de Sentido Incorreto , Fosforilação/genética , Serina/genética , Serina/metabolismo
14.
Biochemistry ; 56(26): 3307-3317, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28570045

RESUMO

Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5'-(T/C)CCTT↓, leading to the formation of a covalent DNA-(3'-phosphotyrosyl274)-enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81-314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1-80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∼2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Modelos Moleculares , Vaccinia virus/enzimologia , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Calorimetria , DNA/química , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Hidrodinâmica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutação , Ressonância Magnética Nuclear Biomolecular , Motivos de Nucleotídeos , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Titulometria , Proteínas Virais/química , Proteínas Virais/genética
15.
Biochemistry ; 55(38): 5377-86, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571275

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K627-725) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K627-725 contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII-αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K627-725 structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K627-725. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K627-725 inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2.


Assuntos
Quinase do Fator 2 de Elongação/química , Animais , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica
16.
Biochemistry ; 54(38): 5828-38, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26333183

RESUMO

Molecular dynamics (MD) simulations combined with biochemical studies have suggested the presence of long-range networks of functionally relevant conformational flexibility on the nanosecond time scale in single-subunit RNA polymerases in many RNA viruses. However, experimental verification of these dynamics at a sufficient level of detail has been lacking. Here we describe the fast, picosecond to nanosecond dynamics of an archetypal viral RNA-directed RNA polymerase (RdRp), the 75 kDa P2 protein from cystovirus ϕ12, using analyses of (1)H-(1)H dipole-dipole cross-correlated relaxation at the methyl positions of Ile (δ1), Leu, Val, and Met residues. Our results, which represent the most detailed experimental characterization of fast dynamics in a viral RdRp until date, reveal a highly connected dynamic network as predicted by MD simulations of related systems. Our results suggest that the entry portals for template RNA and substrate NTPs are relatively disordered, while conserved motifs involved in metal binding, nucleotide selection, and catalysis display greater rigidity. Perturbations at the active site through metal binding or functional mutation affect dynamics not only in the immediate vicinity but also at remote regions. Comparison with the limited experimental and extensive functional and in silico results available for homologous systems suggests conservation of the overall pattern of dynamics in viral RdRps.


Assuntos
Cystoviridae/química , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sequência de Aminoácidos , Cystoviridae/genética , Cystoviridae/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Metilação , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
J Biol Chem ; 288(21): 15212-28, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23543749

RESUMO

The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Regulação Alostérica/fisiologia , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas Fosfatases/genética , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/genética
18.
Nucleic Acids Res ; 40(5): 2076-88, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22084199

RESUMO

The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3'-phosphomonoesterase and 3'-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE•Mn(2+)• sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3'-deoxynucleotide, 3'-deoxynucleotide 3'-phosphate, or 3' ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3'-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd(2+)) and inhibitory (Zn(2+)) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn(2+).


Assuntos
DNA Ligases/química , Proteínas de Ligação a DNA/química , DNA/química , Cristalografia por Raios X , Fluorescência , Metais/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia
19.
Proteins ; 81(8): 1479-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23568335

RESUMO

We have determined the structure of P2, the self-priming RdRp from cystovirus φ12 in two crystal forms (A, B) at resolutions of 1.7 Å and 2.1 Å. Form A contains Mg(2+) bound at a site that deviates from the canonical noncatalytic position seen in form B. These structures provide insight into the temperature sensitivity of a ts-mutant. However, the tunnel through which template ssRNA accesses the active site is partially occluded by a flexible loop; this feature, along with suboptimal positioning of other structural elements that prevent the formation of a stable initiation complex, indicate an inactive conformation in crystallo.


Assuntos
Cystoviridae/enzimologia , RNA Polimerase Dependente de RNA/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cystoviridae/química , Cystoviridae/metabolismo , Magnésio/metabolismo , Conformação Molecular , RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
20.
Science ; 380(6652): 1333-1335, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384678

RESUMO

Highlights from the Science family of journals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa