Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Toxicol In Vitro ; 44: 330-338, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782635

RESUMO

The autophagy-lysosome pathway and the ubiquitin-proteasome systems are the two major routes for eukaryotic intracellular protein clearance. Cancerous cells often display elevated protein synthesis and byproduct disposal, thus, inhibition of the protein degradation pathways became an emerging approach for cancer therapy. The present study revealed that withaferin-A (WA), the biologically active withanolide derived from Withania somnifera, initially induced formation of autophagosomes in human breast cancer cell-lines, MCF-7 and MDA-MB-231. WA treatment elevated the levels of autophagic substrate p62/SQSTM1 (p62) and both LC3-II and LC3-I (microtubule-associated protein 2 light chain 3) and simultaneously reduced the upstream autophagy markers like beclin-1 and ATG5-ATG12 complex, which indicate accumulation of autophagosomes in the cells. WA induced disruption of microtubular network through inhibition of tubulin polymerization and its hyper-acetylation, thus prevent the formation of autolysosome (by merging of autophagosomes with lysosomes) and its recycling process, leading to incomplete autophagy. Further, WA caused ER (Endoplasmic Reticulum) stress, which is evident from the activation of ER-related caspase-4 and increased levels of ER stress marker proteins. Thus, these findings altogether indicate that WA mediated inhibition of proteasomal degradation system and perturbation of autophagy, i.e. suppression of both the intracellular degradation systems caused accumulation of ubiquitinated proteins, which in turn led to unfolded protein response and ER stress mediated proteotoxicity in human breast cancer cell-lines, MCF-7 and MDA-MB-231.


Assuntos
Autofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vitanolídeos/toxicidade , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
3.
PLoS One ; 11(12): e0168488, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28033383

RESUMO

Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically) distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA) induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER), forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1) was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Species)by WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1) mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Vitanolídeos/farmacologia , Autofagia/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa