Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 29(18): 1942-54, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385964

RESUMO

The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20-50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1-TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Nucleossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
BMC Genomics ; 20(1): 225, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890156

RESUMO

BACKGROUND: Large-scale genetic screening using CRISPR-Cas9 technology has emerged as a powerful approach to uncover and validate gene functions. The ability to control the timing of genetic perturbation during CRISPR screens will facilitate precise dissection of dynamic and complex biological processes. Here, we report the optimization of a drug-inducible CRISPR-Cas9 system that allows high-throughput gene interrogation with a temporal control. RESULTS: We designed multiple drug-inducible sgRNA expression vectors and measured their activities using an EGFP gene disruption assay in 11 human and mouse cell lines. The optimal design allows for a tight and inducible control of gene knockout in vitro, and in vivo during a seven-week-long experiment following hematopoietic reconstitution in mice. We next performed parallel genome-wide loss-of-function screens using the inducible and constitutive CRISPR-Cas9 systems. In proliferation-based dropout screens, these two approaches have similar performance in discriminating essential and nonessential genes. In a more challenging phenotypic assay that requires cytokine stimulation and cell staining, we observed similar sensitivity of the constitutive and drug-induced screening approaches in detecting known hits. Importantly, we demonstrate minimal leakiness of our inducible CRISPR screening platforms in the absence of chemical inducers in large-scale settings. CONCLUSIONS: In this study, we have developed a drug-inducible CRISPR-Cas9 system that shows high cleavage efficiency upon induction but low background activity. Using this system, we have achieved inducible gene disruption in a wide range of cell types both in vitro and in vivo. For the first time, we present a systematic side-by-side comparison of constitutive and drug-inducible CRISPR-Cas9 platforms in large-scale functional screens. We demonstrate the tightness and efficiency of our drug-inducible CRISPR-Cas9 system in genome-wide pooled screening. Our design increases the versatility of CRISPR-based genetic screening and represents a significant upgrade on existing functional genomics toolbox.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Receptores ErbB/antagonistas & inibidores , Marcação de Genes/métodos , Testes Genéticos/métodos , Neoplasias Renais/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Proliferação de Células , Células Cultivadas , Receptores ErbB/genética , Genoma , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Camundongos
3.
Nucleic Acids Res ; 45(15): 8773-8784, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28549169

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), but are not good predictors of lung phenotype. Genome-wide association studies (GWAS) previously identified additional genomic sites associated with CF lung disease severity. One of these, at chromosome 11p13, is an intergenic region between Ets homologous factor (EHF) and Apaf-1 interacting protein (APIP). Our goal was to determine the functional significance of this region, which being intergenic is probably regulatory. To identify cis-acting elements, we used DNase-seq and H3K4me1 and H3K27Ac ChIP-seq to map open and active chromatin respectively, in lung epithelial cells. Two elements showed strong enhancer activity for the promoters of EHF and the 5' adjacent gene E47 like ETS transcription factor 5 (ELF5) in reporter gene assays. No enhancers of the APIP promoter were found. Circular chromosome conformation capture (4C-seq) identified direct physical interactions of elements within 11p13. This confirmed the enhancer-promoter associations, identified additional interacting elements and defined topologically associating domain (TAD) boundaries, enriched for CCCTC-binding factor (CTCF). No strong interactions were observed with the APIP promoter, which lies outside the main TAD encompassing the GWAS signal. These results focus attention on the role of EHF in modifying CF lung disease severity.


Assuntos
Cromossomos Humanos Par 11/genética , Fibrose Cística/genética , Fibrose Cística/patologia , Regulação da Expressão Gênica , Fatores de Transcrição/fisiologia , Células CACO-2 , Células Cultivadas , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Fatores de Transcrição/genética
4.
J Biol Chem ; 292(26): 10938-10949, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28461336

RESUMO

The airway epithelium forms a barrier between the internal and external environments. Epithelial dysfunction is critical in the pathology of many respiratory diseases, including cystic fibrosis. Ets homologous factor (EHF) is a key member of the transcription factor network that regulates gene expression in the airway epithelium in response to endogenous and exogenous stimuli. EHF, which has altered expression in inflammatory states, maps to the 5' end of an intergenic region on Chr11p13 that is implicated as a modifier of cystic fibrosis airway disease. Here we determine the functions of EHF in primary human bronchial epithelial (HBE) cells and relevant airway cell lines. Using EHF ChIP followed by deep sequencing (ChIP-seq) and RNA sequencing after EHF depletion, we show that EHF targets in HBE cells are enriched for genes involved in inflammation and wound repair. Furthermore, changes in gene expression impact cell phenotype because EHF depletion alters epithelial secretion of a neutrophil chemokine and slows wound closure in HBE cells. EHF activates expression of the SAM pointed domain-containing ETS transcription factor, which contributes to goblet cell hyperplasia. Our data reveal a critical role for EHF in regulating epithelial function in lung disease.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Fatores de Transcrição/metabolismo , Brônquios/patologia , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/patologia , Células Caliciformes/patologia , Humanos , Hiperplasia , Neutrófilos/metabolismo , Neutrófilos/patologia , Fatores de Transcrição/genética
5.
Nucleic Acids Res ; 39(21): 9155-66, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21835776

RESUMO

SWI/SNF is an ATP-dependent remodeler that mobilizes nucleosomes and has important roles in gene regulation. The catalytic subunit of SWI/SNF has an ATP-dependent DNA translocase domain that is essential for remodeling. Besides the DNA translocase domain there are other domains in the catalytic subunit of SWI/SNF that have important roles in mobilizing nucleosomes. One of these domains, termed SnAC (Snf2 ATP Coupling), is conserved in all eukaryotic SWI/SNF complexes and is located between the ATPase and A-T hook domains. Here, we show that the SnAC domain is essential for SWI/SNF activity. The SnAC domain is not required for SWI/SNF complex integrity, efficient nucleosome binding, or recruitment by acidic transcription activators. The SnAC domain is however required in vivo for transcription regulation by SWI/SNF as seen by alternative carbon source growth assays, northern analysis, and genome-wide expression profiling. The ATPase and nucleosome mobilizing activities of SWI/SNF are severely affected when the SnAC domain is removed or mutated. The SnAC domain positively regulates the catalytic activity of the ATPase domain of SWI/SNF to hydrolyze ATP without significantly affecting its affinity for ATP.


Assuntos
Adenosina Trifosfatases/química , Montagem e Desmontagem da Cromatina , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência Conservada , DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
BMC Med Genomics ; 15(1): 74, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365203

RESUMO

BACKGROUND: The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. METHODS: To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. RESULTS: We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). CONCLUSIONS: This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Humanos , Fenótipo , Regiões Promotoras Genéticas
7.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35185150

RESUMO

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas ras , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
8.
J Mol Diagn ; 21(1): 70-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296588

RESUMO

It is estimated that up to 5% of cystic fibrosis transmembrane conductance regulator (CFTR) pathogenic alleles are unidentified. Some of these errors may lie in noncoding regions of the locus and affect gene expression. To identify regulatory element variants in the CFTR locus, SureSelect targeted enrichment of 460 kb encompassing the gene was optimized to deep sequence genomic DNA from 80 CF patients with an unequivocal clinical diagnosis but only one or no CFTR-coding region pathogenic variants. Bioinformatics tools were used to identify sequence variants and predict their impact, which were then assayed in transient reporter gene luciferase assays. The effect of five variants in the CFTR promoter and four in an intestinal enhancer of the gene were assayed in relevant cell lines. The initial analysis of sequence data revealed previously known CF-causing variants, validating the robustness of the SureSelect design, and showed that 85 of 160 CF alleles were undefined. Of a total 1737 variants revealed across the extended 460-kb CFTR locus, 51 map to known CFTR cis-regulatory elements, and many of these are predicted to alter transcription factor occupancy. Four promoter variants and all those in the intestinal enhancer significantly repress reporter gene activity. These data suggest that CFTR regulatory elements may harbor novel CF disease-causing variants that warrant further investigation, both for genetic screening protocols and functional assays.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Alelos , Células CACO-2 , Linhagem Celular , Loci Gênicos , Testes Genéticos/métodos , Variação Genética , Genômica/métodos , Humanos , Regiões Promotoras Genéticas
10.
Mol Cell Biol ; 31(1): 190-202, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956559

RESUMO

Eukaryotic genes respond to their environment by changing the expression of selected genes. The question we address here is whether distinct transcriptional responses to different environmental signals elicit distinct modes of assembly of the transcription machinery. In particular, we examine transcription complex assembly by the stress-directed SAGA complex versus the housekeeping assembly factor TFIID. We focus on genomic responses to the DNA damaging agent methyl methanesulfonate (MMS) in comparison to responses to acute heat shock, looking at changes in genome-wide factor occupancy measured by chromatin immunoprecipitation-microchip (ChIP-chip) and ChIP-sequencing analyses. Our data suggest that MMS-induced genes undergo transcription complex assembly sequentially, first involving SAGA and then involving a slower TFIID recruitment, whereas heat shock genes utilize the SAGA and TFIID pathways rapidly and in parallel. Also Crt1, the repressor of model MMS-inducible ribonucleotide reductase genes, was found not to play a wider role in repression of DNA damage-inducible genes. Taken together, our findings reveal a distinct involvement of gene and chromatin regulatory factors in response to DNA damage versus heat shock and suggest different implementations of the SAGA and TFIID assembly pathways that may depend upon whether a sustained or transient change in gene expression ensues.


Assuntos
Dano ao DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genoma Fúngico , Resposta ao Choque Térmico , Metanossulfonato de Metila/toxicidade , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa