Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Hum Mol Genet ; 32(14): 2347-2356, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37162351

RESUMO

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid ß-oxidation (FAO) in humans. Patients exhibit clinical episodes often associated with fasting. Symptoms include hypoketotic hypoglycemia and Reye-like episodes. With limited treatment options, we explored the use of human MCAD (hMCAD) mRNA in fibroblasts from patients with MCAD deficiency to provide functional MCAD protein and reverse the metabolic block. Transfection of hMCAD mRNA into MCAD- deficient patient cells resulted in an increased MCAD protein that localized to mitochondria, concomitant with increased enzyme activity in cell extracts. The therapeutic hMCAD mRNA-lipid nanoparticle (LNP) formulation was also tested in vivo in Acadm-/- mice. Administration of multiple intravenous doses of the hMCAD mRNA-LNP complex (LNP-MCAD) into Acadm-/- mice produced a significant level of MCAD protein with increased enzyme activity in liver, heart and skeletal muscle homogenates. Treated Acadm-/- mice were more resistant to cold stress and had decreased plasma levels of medium-chain acylcarnitines compared to untreated animals. Furthermore, hepatic steatosis in the liver from treated Acadm-/- mice was reduced compared to untreated ones. Results from this study support the potential therapeutic value of hMCAD mRNA-LNP complex treatment for MCAD deficiency.


Assuntos
Acil-CoA Desidrogenases , Fibroblastos , Humanos , Camundongos , Animais , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , RNA Mensageiro/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo
2.
Nucleic Acids Res ; 51(9): 4126-4147, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070173

RESUMO

Herein, we report the systematic investigation of stereopure phosphorothioate (PS) and phosphoryl guanidine (PN) linkages on siRNA-mediated silencing. The incorporation of appropriately positioned and configured stereopure PS and PN linkages to N-acetylgalactosamine (GalNAc)-conjugated siRNAs based on multiple targets (Ttr and HSD17B13) increased potency and durability of mRNA silencing in mouse hepatocytes in vivo compared with reference molecules based on clinically proven formats. The observation that the same modification pattern had beneficial effects on unrelated transcripts suggests that it may be generalizable. The effect of stereopure PN modification on silencing is modulated by 2'-ribose modifications in the vicinity, particularly on the nucleoside 3' to the linkage. These benefits corresponded with both an increase in thermal instability at the 5'-end of the antisense strand and improved Argonaute 2 (Ago2) loading. Application of one of our most effective designs to generate a GalNAc-siRNA targeting human HSD17B13 led to ∼80% silencing that persisted for at least 14 weeks after administration of a single 3 mg/kg subcutaneous dose in transgenic mice. The judicious use of stereopure PN linkages improved the silencing profile of GalNAc-siRNAs without disrupting endogenous RNA interference pathways and without elevating serum biomarkers for liver dysfunction, suggesting they may be suitable for therapeutic application.


Assuntos
Inativação Gênica , Interferência de RNA , RNA Mensageiro , Animais , Humanos , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
3.
Mol Genet Metab ; 138(1): 106982, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580829

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inborn error of long chain fatty acid ß-oxidation (FAO) with limited treatment options. Patients present with heterogeneous clinical phenotypes affecting predominantly heart, liver, and skeletal muscle. While VLCAD deficiency is a systemic disease, restoration of liver FAO has the potential to improve symptoms more broadly due to increased total body ATP production and reduced accumulation of potentially toxic metabolites. We explored the use of synthetic human VLCAD (hVLCAD) mRNA and lipid nanoparticle encapsulated hVLCAD mRNA (LNP-VLCAD) to generate functional VLCAD enzyme in patient fibroblasts derived from VLCAD deficient patients, mouse embryonic fibroblasts, hepatocytes isolated from VLCAD knockout (Acadvl-/-) mice, and Acadvl-/- mice to reverse the metabolic effects of the deficiency. Transfection of all cell types with hVLCAD mRNA resulted in high level expression of protein that localized to mitochondria with increased enzyme activity. Intravenous administration of LNP-VLCAD to Acadvl-/- mice produced a significant amount of VLCAD protein in liver, which declined over a week. Treated Acadvl-/- mice showed reduced hepatic steatosis, were more resistant to cold stress, and accumulated less toxic metabolites in blood than untreated animals. Results from this study support the potential for hVLCAD mRNA for treatment of VLCAD deficiency.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Erros Inatos do Metabolismo Lipídico , Humanos , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia
4.
Amino Acids ; 55(5): 695-708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36944899

RESUMO

Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Animais , Humanos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Cinética , Glucose/metabolismo , Aminoácidos , Mamíferos/metabolismo
5.
Mol Ther ; 29(8): 2396-2411, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34146729

RESUMO

The development of an aptamer-based therapeutic has rapidly progressed following the first two reports in the 1990s, underscoring the advantages of aptamer drugs associated with their unique binding properties. In 2004, the US Food and Drug Administration (FDA) approved the first therapeutic aptamer for the treatment of neovascular age-related macular degeneration, Macugen developed by NeXstar. Since then, eleven aptamers have successfully entered clinical trials for various therapeutic indications. Despite some of the pre-clinical and clinical successes of aptamers as therapeutics, no aptamer has been approved by the FDA for the treatment of cancer. This review highlights the most recent and cutting-edge approaches in the development of aptamers for the treatment of cancer types most refractory to conventional therapies. Herein, we will review (1) the development of aptamers to enhance anti-cancer immunity and as delivery tools for inducing the expression of immunogenic neoantigens; (2) the development of the most promising therapeutic aptamers designed to target the hard-to-treat cancers such as brain tumors; and (3) the development of "carrier" aptamers able to target and penetrate tumors and metastasis, delivering RNA therapeutics to the cytosol and nucleus.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Aptâmeros de Nucleotídeos/imunologia , Portadores de Fármacos , Desenvolvimento de Medicamentos , Humanos , Neoplasias/imunologia , Evasão Tumoral/efeitos dos fármacos
6.
J Hepatol ; 74(6): 1416-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340584

RESUMO

BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare lethal autosomal recessive liver disorder caused by loss-of-function variations of the ABCB4 gene, encoding a phosphatidylcholine transporter (ABCB4/MDR3). Currently, no effective treatment exists for PFIC3 outside of liver transplantation. METHODS: We have produced and screened chemically and genetically modified mRNA variants encoding human ABCB4 (hABCB4 mRNA) encapsulated in lipid nanoparticles (LNPs). We examined their pharmacological effects in a cell-based model and in a new in vivo mouse model resembling human PFIC3 as a result of homozygous disruption of the Abcb4 gene in fibrosis-susceptible BALB/c.Abcb4-/- mice. RESULTS: We show that treatment with liver-targeted hABCB4 mRNA resulted in de novo expression of functional hABCB4 protein and restored phospholipid transport in cultured cells and in PFIC3 mouse livers. Importantly, repeated injections of the hABCB4 mRNA effectively rescued the severe disease phenotype in young Abcb4-/- mice, with rapid and dramatic normalisation of all clinically relevant parameters such as inflammation, ductular reaction, and liver fibrosis. Synthetic mRNA therapy also promoted favourable hepatocyte-driven liver regeneration to restore normal homeostasis, including liver weight, body weight, liver enzymes, and portal vein blood pressure. CONCLUSIONS: Our data provide strong preclinical proof-of-concept for hABCB4 mRNA therapy as a potential treatment option for patients with PFIC3. LAY SUMMARY: This report describes the development of an innovative mRNA therapy as a potential treatment for PFIC3, a devastating rare paediatric liver disease with no treatment options except liver transplantation. We show that administration of our mRNA construct completely rescues severe liver disease in a genetic model of PFIC3 in mice.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Deleção de Genes , Lipossomos/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Nanopartículas/química , Fenótipo , RNA Mensageiro/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Colestase Intra-Hepática/metabolismo , Modelos Animais de Doenças , Células HEK293 , Homozigoto , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , RNA Mensageiro/genética , Transfecção , Resultado do Tratamento , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
8.
Mol Ther ; 27(7): 1242-1251, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31056400

RESUMO

Citrin deficiency is an autosomal recessive disorder caused by loss-of-function mutations in SLC25A13, encoding the liver-specific mitochondrial aspartate/glutamate transporter. It has a broad spectrum of clinical phenotypes, including life-threatening neurological complications. Conventional protein replacement therapy is not an option for these patients because of drug delivery hurdles, and current gene therapy approaches (e.g., AAV) have been hampered by immunogenicity and genotoxicity. Although dietary approaches have shown some benefits in managing citrin deficiency, the only curative treatment option for these patients is liver transplantation, which is high-risk and associated with long-term complications because of chronic immunosuppression. To develop a new class of therapy for citrin deficiency, codon-optimized mRNA encoding human citrin (hCitrin) was encapsulated in lipid nanoparticles (LNPs). We demonstrate the efficacy of hCitrin-mRNA-LNP therapy in cultured human cells and in a murine model of citrin deficiency that resembles the human condition. Of note, intravenous (i.v.) administration of the hCitrin-mRNA resulted in a significant reduction in (1) hepatic citrulline and blood ammonia levels following oral sucrose challenge and (2) sucrose aversion, hallmarks of hCitrin deficiency. In conclusion, mRNA-LNP therapy could have a significant therapeutic effect on the treatment of citrin deficiency and other mitochondrial enzymopathies with limited treatment options.


Assuntos
Citrulinemia/tratamento farmacológico , Citrulinemia/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Mensageiro/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucosefosfato Desidrogenase/genética , Células HeLa , Células Hep G2 , Humanos , Lipídeos/química , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Nanopartículas/química , Fases de Leitura Aberta/genética , RNA Mensageiro/síntese química , RNA Mensageiro/química , RNA Mensageiro/genética , Transfecção , Resultado do Tratamento
9.
Mol Ther ; 31(11): 3105-3106, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863063
10.
Int J Cancer ; 143(5): 1188-1201, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29582409

RESUMO

Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular , Neoplasias Pulmonares/secundário , Receptor EphA2/metabolismo , Sarcoma de Ewing/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proliferação de Células , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica , Fosforilação , Prognóstico , Receptor EphA2/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Methods ; 103: 180-7, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972784

RESUMO

The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization.


Assuntos
Aptâmeros de Nucleotídeos/química , Adesão Celular , Células Cultivadas , Humanos , Técnica de Seleção de Aptâmeros , Espectrometria de Fluorescência , Coloração e Rotulagem
12.
Methods ; 97: 94-103, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631715

RESUMO

A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed.


Assuntos
Separação Celular/métodos , Células Neoplásicas Circulantes , Animais , Aptâmeros de Nucleotídeos/química , Contagem de Células , Humanos , Neoplasias/diagnóstico
13.
Methods ; 97: 3-10, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26481156

RESUMO

The development of DNA and RNA aptamers for research as well as diagnostic and therapeutic applications is a rapidly growing field. In the past decade, the process of identifying aptamers has been revolutionized with the advent of high-throughput sequencing (HTS). However, bioinformatics tools that enable the average molecular biologist to analyze these large datasets and expedite the identification of candidate aptamer sequences have been lagging behind the HTS revolution. The Galaxy Project was developed in order to efficiently analyze genome, exome, and transcriptome HTS data, and we have now applied these tools to aptamer HTS data. The Galaxy Project's public webserver is an open source collection of bioinformatics tools that are powerful, flexible, dynamic, and user friendly. The online nature of the Galaxy webserver and its graphical interface allow users to analyze HTS data without compiling code or installing multiple programs. Herein we describe how tools within the Galaxy webserver can be adapted to pre-process, compile, filter and analyze aptamer HTS data from multiple rounds of selection.


Assuntos
Técnica de Seleção de Aptâmeros , Software , Aptâmeros de Nucleotídeos/genética , Pesquisa Biomédica , Biologia Computacional , Interpretação Estatística de Dados , Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
14.
Methods ; 103: 175-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972787

RESUMO

RNA aptamers represent an emerging class of biologics that can be easily adapted for personalized and precision medicine. Several therapeutic aptamers with desirable binding and functional properties have been developed and evaluated in preclinical studies over the past 25years. However, for the majority of these aptamers, their clinical potential has yet to be realized. A significant hurdle to the clinical adoption of this novel class of biologicals is the limited information on their secondary and tertiary structure. Knowledge of the RNA's structure would greatly facilitate and expedite the post-selection optimization steps required for translation, including truncation (to reduce costs of manufacturing), chemical modification (to enhance stability and improve safety) and chemical conjugation (to improve drug properties for combinatorial therapy). Here we describe a structural computational modeling methodology that when coupled to a standard functional assay, can be used to determine key sequence and structural motifs of an RNA aptamer. We applied this methodology to enable the truncation of an aptamer to prostate specific membrane antigen (PSMA) with great potential for targeted therapy that had failed previous truncation attempts. This methodology can be easily applied to optimize other aptamers with therapeutic potential.


Assuntos
Aptâmeros de Nucleotídeos/química , Simulação por Computador , Glutamato Carboxipeptidase II/química , Humanos , Sequências Repetidas Invertidas , Modelos Moleculares , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros , Software
15.
Methods ; 103: 167-74, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972786

RESUMO

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind with exquisitely high affinity and specificity to target molecules and are thus often referred to as 'nucleic acid' antibodies. Oligonucleotide aptamers are derived through a process of directed chemical evolution called SELEX (Systematic Evolution of Ligands by Exponential enrichment). This chemical equivalent of Darwinian evolution was first described in 1990 by Tuerk & Gold and Ellington & Szostak and has since yielded aptamers for a wide-range of applications, including biosensor technologies, in vitro diagnostics, biomarker discovery, and therapeutics. Since the inception of the original SELEX method, numerous modifications to the protocol have been described to fit the choice of target, specific conditions or applications. Technologies such as high-throughput sequencing methods and microfluidics have also been adapted for SELEX. In this chapter, we outline key steps in the SELEX process for enabling the rapid identification of RNA aptamers for in vivo applications. Specifically, we provide a detailed protocol for the selection of chemically-optimized RNA aptamers using the original in vitro SELEX methodology. In addition, methods for performing next-generation sequencing of the RNAs from each round of selection, based on Illumina sequencing technology, are discussed.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequência de Bases , Desenho de Fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
16.
Mol Ther ; 24(4): 779-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732878

RESUMO

Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-ß phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Neointima/metabolismo , Fosforilação , Ratos
17.
Nature ; 465(7295): 227-30, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20463739

RESUMO

The main reason why tumours are not controlled by the immune system is that, unlike pathogens, they do not express potent tumour rejection antigens (TRAs). Tumour vaccination aims at stimulating a systemic immune response targeted to, mostly weak, antigens expressed in the disseminated tumour lesions. Main challenges in developing effective vaccination protocols are the identification of potent and broadly expressed TRAs and effective adjuvants to stimulate a robust and durable immune response. Here we describe an alternative approach in which the expression of new, and thereby potent, antigens are induced in tumour cells by inhibiting nonsense-mediated messenger RNA decay (NMD). Small interfering RNA (siRNA)-mediated inhibition of NMD in tumour cells led to the expression of new antigenic determinants and their immune-mediated rejection. In subcutaneous and metastatic tumour models, tumour-targeted delivery of NMD factor-specific siRNAs conjugated to oligonucleotide aptamer ligands led to significant inhibition of tumour growth that was superior to that of vaccination with granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing irradiated tumour cells, and could be further enhanced by co-stimulation. Tumour-targeted NMD inhibition forms the basis of a simple, broadly useful, and clinically feasible approach to enhance the antigenicity of disseminated tumours leading to their immune recognition and rejection. The cell-free chemically synthesized oligonucleotide backbone of aptamer-siRNAs reduces the risk of immunogenicity and enhances the feasibility of generating reagents suitable for clinical use.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Estabilidade de RNA/genética , RNA Interferente Pequeno/genética , Animais , Aptâmeros de Nucleotídeos/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Galinhas/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Proteínas de Ligação a RNA , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Ther ; 22(6): 1151-1163, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24441398

RESUMO

While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , MicroRNAs/genética , MicroRNAs/farmacologia , Neoplasias/patologia , Neoplasias/terapia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Masculino , Camundongos Nus , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias Experimentais , Especificidade de Órgãos , Receptor Tirosina Quinase Axl
19.
Mol Ther ; 22(11): 1910-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954476

RESUMO

Cell-targeted therapies (smart drugs), which selectively control cancer cell progression with limited toxicity to normal cells, have been developed to effectively treat some cancers. However, many cancers such as metastatic prostate cancer (PC) have yet to be treated with current smart drug technology. Here, we describe the thorough preclinical characterization of an RNA aptamer (A9g) that functions as a smart drug for PC by inhibiting the enzymatic activity of prostate-specific membrane antigen (PSMA). Treatment of PC cells with A9g results in reduced cell migration/invasion in culture and metastatic disease in vivo. Importantly, A9g is safe in vivo and is not immunogenic in human cells. Pharmacokinetic and biodistribution studies in mice confirm target specificity and absence of non-specific on/off-target effects. In conclusion, these studies provide new and important insights into the role of PSMA in driving carcinogenesis and demonstrate critical endpoints for the translation of a novel RNA smart drug for advanced stage PC.


Assuntos
Antígenos de Superfície/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Glutamato Carboxipeptidase II/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Animais , Aptâmeros de Nucleotídeos/farmacocinética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nucleic Acids Res ; 40(13): 6319-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467215

RESUMO

Human epidermal growth factor receptor 2 (HER2) expression in breast cancer is associated with an aggressive phenotype and poor prognosis, making it an appealing therapeutic target. Trastuzumab, an HER2 antibody-based inhibitor, is currently the leading targeted treatment for HER2(+)-breast cancers. Unfortunately, many patients inevitably develop resistance to the therapy, highlighting the need for alternative targeted therapeutic options. In this study, we used a novel, cell-based selection approach for isolating 'cell-type specific', 'cell-internalizing RNA ligands (aptamers)' capable of delivering therapeutic small interfering RNAs (siRNAs) to HER2-expressing breast cancer cells. RNA aptamers with the greatest specificity and internalization potential were covalently linked to siRNAs targeting the anti-apoptotic gene, Bcl-2. We demonstrate that, when applied to cells, the HER2 aptamer-Bcl-2 siRNA conjugates selectively internalize into HER2(+)-cells and silence Bcl-2 gene expression. Importantly, Bcl-2 silencing sensitizes these cells to chemotherapy (cisplatin) suggesting a potential new therapeutic approach for treating breast cancers with HER2(+)-status. In summary, we describe a novel cell-based selection methodology that enables the identification of cell-internalizing RNA aptamers for targeting therapeutic siRNAs to HER2-expressing breast cancer cells. The future refinement of this technology may promote the widespread use of RNA-based reagents for targeted therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Neoplasias Mamárias Experimentais/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/análise , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Técnica de Seleção de Aptâmeros
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa