Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neuroinflammation ; 17(1): 266, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894170

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. METHODS: To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. RESULTS: As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. CONCLUSIONS: In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.


Assuntos
Potenciais de Ação/fisiologia , Encefalomielite Autoimune Experimental/fisiopatologia , Condução Nervosa/fisiologia , Nervos Periféricos/fisiopatologia , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Bainha de Mielina/imunologia , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Nervos Periféricos/imunologia , Nervos Periféricos/patologia
2.
Exp Cell Res ; 382(2): 111475, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31255600

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/metabolismo , Gânglios Espinais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Glicosilação , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Nitritos/metabolismo , Fosforilação , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
3.
Exp Neurol ; 332: 113390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598929

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.


Assuntos
Meio Ambiente , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Animais , Sobrevivência Celular , Constrição Patológica , Endorfinas/sangue , Encefalinas/sangue , Hiperalgesia/patologia , Masculino , Fibras Nervosas/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Nervo Isquiático/patologia , Medula Espinal/metabolismo , Suporte de Carga
4.
Toxins (Basel) ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757011

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15.


Assuntos
Analgésicos/uso terapêutico , Crotoxina/uso terapêutico , Neuralgia/tratamento farmacológico , Dióxido de Silício/uso terapêutico , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Crotoxina/administração & dosagem , Crotoxina/efeitos adversos , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Nociceptividade/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Dióxido de Silício/administração & dosagem , Dióxido de Silício/efeitos adversos , Medula Espinal/metabolismo
5.
Pain Res Manag ; 2017: 7429761, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420943

RESUMO

Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF) released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM) technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI). CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP), microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Terapia por Exercício/métodos , Regulação da Expressão Gênica , Neuralgia/reabilitação , Neuroglia/patologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Contagem de Células , Densitometria , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Neuralgia/patologia , Neuroglia/metabolismo , Ratos , Ratos Wistar , Tetraspanina 25/metabolismo
6.
Int J Mol Sci, v. 23, n. 19, 11571, set. 2022
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4556

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for β-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.

7.
Brain. Behav. Immun. ; 84: 253-268, 2020.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17554

RESUMO

Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st–12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th–9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 µg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-?-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.

8.
Exp. Neurol. ; : 113390, 2020.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17758

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14?days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.

9.
Neurosci. Lett. ; 721: 134765, 2020.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17401

RESUMO

Previous studies suggested the pharmacological potential of rat hemopressin (PVNFKFLSH) and its shorter synthetic peptide NFKF, to protect from pilocarpine-induced seizures in mice. Orally administered NFKF was shown to be hundred times more potent than cannabidiol in delaying the first seizure induced by pilocarpine in mice. Here, using an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis we have shown that C57BL/6J mice orally administrated with NFKF (500µg/kg) presented better EAE clinical scores and improved locomotor activity compared to saline administrated control mice. NFKF blocked the production of IL-1beta and IL-6, and has high scores binding cannabinoid type 2 receptors. Therefore, NFKF is an exciting new possibility to neurodegenerative diseases therapeutics.

10.
Toxins, v. 13, n. 11, 827, nov. 2021
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4010

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.

11.
J Neuroinflammation, v. 17, 266, set. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3187

RESUMO

Background Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. Methods To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. Results As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. Conclusions In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.

12.
Brain Behav Immun, v. 84, p. 253-268, fev. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2982

RESUMO

Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st–12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th–9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 µg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-?-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.

13.
Toxins ; 11(12): 679, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17389

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15

14.
Exp Neurol, v. 332, 113390, jun. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3080

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14?days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.

15.
Neurosci Lett, v. 721, 134765, jan. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2921

RESUMO

Previous studies suggested the pharmacological potential of rat hemopressin (PVNFKFLSH) and its shorter synthetic peptide NFKF, to protect from pilocarpine-induced seizures in mice. Orally administered NFKF was shown to be hundred times more potent than cannabidiol in delaying the first seizure induced by pilocarpine in mice. Here, using an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis we have shown that C57BL/6J mice orally administrated with NFKF (500µg/kg) presented better EAE clinical scores and improved locomotor activity compared to saline administrated control mice. NFKF blocked the production of IL-1beta and IL-6, and has high scores binding cannabinoid type 2 receptors. Therefore, NFKF is an exciting new possibility to neurodegenerative diseases therapeutics.

16.
Exp Cell Res ; 382(2): 111475, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17205

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-a by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.

17.
Front Immunol, v. 11, 591563, out. 2020
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3312

RESUMO

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.

18.
Toxins, v. 11, n. 12, p. 679, nov. 2019
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2915

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15

19.
Exp Cell Res, v. 382, n. 2, 111475, set. 2019
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4135

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.

20.
São Paulo; 2020. 72 p.
Tese em Português | SES-SP | ID: bud-5394

RESUMO

Multiple sclerosis (MS) is an inflammatory, autoimmune and demyelinating disease of the central nervous system (CNS), which has no cure and causes sensory and motor impairments. Cells of the immune system actively participate in the pathogenesis and progression of this disease by attacking the myelin sheath and inducing neuroinflammation, generating tissue damage, demyelination and neuronal death. Among several symptoms caused by MS, pain is present in most individuals. Crotalphine (CRO), a 14-aa synthetic peptide, induces analgesic activity by endogenous opioid release mediated by type 2 cannabinoid receptors activation. Studies demonstrated that the control of neuroinflammation through activation of type 2 cannabinoid receptors contributes to the control of the disease in an animal model of MS. Our aims were to assess the effects of CRO on MOG35–55-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS, evaluating the pain, progression of motor impairment and some neuroinflammatory parameters involved in this model. EAE decreased the nociceptive threshold, determined using an electronic pressure-meter test and induced clinical signs assessed through scores from 0 to 5. No changes were observed in BDNF, NGF and MBP expression in the spinal cord. CRO (50 μg/kg) was administered in a single dose (on the 5th day after immunization) or in 5 doses (starting on 12th day after immunization, one daily dose). Both protocols of treatment decreased the severity of the clinical signs when compared to saline- treated animals, reduced the expression of IL-17 and reduced the immunoreactivity of the neuronal activity, microglia/macrophages and astrocytes markers induced by EAE in spinal cord; when administered for 5 days, CRO decreased CD11b expression in spinal cord; single dose was able to caused partial reversion of EAE-induced mechanical hyperalgesia, reduced TNF-α expression and inflammatory infiltrate in spinal cord, reduced Th17 cells in the lymph nodes, and decreased myelin thickness in sciatic nerve observed in untreated group. These results may explain the improvement of the clinical signs and the attenuation of neuroinflammation induced by EAE, pointing out CRO as a promising agent for the control of MS.


A esclerose múltipla (EM) é uma doença inflamatória, autoimune e desmielinizante do sistema nervoso central (SNC), que não tem cura e causa alterações sensoriais e motoras. Células do sistema imune participam ativamente na patogênese e progressão desta doença pelo ataque a bainha de mielina e neuroinflamação, acarretando dano tecidual, desmielinização e morte neuronal. Dentre diversos sintomas causados pela EM, a dor está presente em grande parte dos indivíduos. Crotalfina (CRO), um peptídeo sintético de 14 aminoácidos, induz efeito analgésico por liberação de opioide endógeno, mediado pela ativação de receptores canabinoides tipo 2. Estudos demonstraram que o controle da neuroinflamação por meio da ativação de receptores canabinoide do tipo 2 contribui para o controle da doença em modelo animal de EM. Nossos objetivos foram avaliar os efeitos da CRO na encefalomielite autoimune experimental (EAE) induzida por MOG35–55, modelo animal de EM, quanto à dor, comprometimento motor e alguns parâmetros neuroinflamatórios envolvidos nesse modelo. A EAE diminuiu o limiar nociceptivo dos animais, que foi determinado pelo teste de von Frey eletrônico e induziu sinais clínicos, avaliados por escores de 0 a 5. Não foram observadas alterações na expressão de BDNF, NGF e MBP na medula espinal. CRO (50 μg/kg) foi administrada em dose única (5o dia após a imunização) ou em 5 doses (começando no 12o dia após a imunização, uma dose por dia). Ambos os protocolos de tratamento diminuíram a intensidade dos sinais clínicos da EAE quando comparada ao grupo tratado apenas com o veículo, reduziram a expressão de IL-17 e a imunorreatividade na medula espinal dos marcadores de atividade neural, microglia/macrófagos e astrócitos induzida pela EAE. Quando administrada em 5 doses, a CRO diminuiu a expressão de CD11b na medula espinal; a dose única foi capaz de reverter parcialmente a hiperalgesia mecânica gerada pela EAE, reduzir a expressão de TNF-α e o infiltrado inflamatório na medula, reduzir células Th17 nos linfonodos e no nervo isquiático, e prevenir redução na espessura da mielina, alterações essas observadas no grupo não tratado. Esses dados elucidam a melhora observada no quadro clínico dos animais pela atenuação da neuroinflamação induzida pela EAE, apontando a CRO como um agente promissor para o controle da MS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa