Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Genomics ; 15 Suppl 8: S1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435180

RESUMO

BACKGROUND: Many computational methods are available for assembly and annotation of newly sequenced microbial genomes. However, when new genomes are reported in the literature, there is frequently very little critical analysis of choices made during the sequence assembly and gene annotation stages. These choices have a direct impact on the biologically relevant products of a genomic analysis--for instance identification of common and differentiating regions among genomes in a comparison, or identification of enriched gene functional categories in a specific strain. Here, we examine the outcomes of different assembly and analysis steps in typical workflows in a comparison among strains of Vibrio vulnificus. RESULTS: Using six recently sequenced strains of V. vulnificus, we demonstrate the "alternate realities" of comparative genomics, and how they depend on the choice of a robust assembly method and accurate ab initio annotation. We apply several popular assemblers for paired-end Illumina data, and three well-regarded ab initio genefinders. We demonstrate significant differences in detected gene overlap among comparative genomics workflows that depend on these two steps. The divergence between workflows, even those using widely adopted methods, is obvious both at the single genome level and when a comparison is performed. In a typical example where multiple workflows are applied to the strain V. vulnificus CECT 4606, a workflow that uses the Velvet assembler and Glimmer gene finder identifies 3275 gene features, while a workflow that uses the Velvet assembler and the RAST annotation system identifies 5011 gene features. Only 3171 genes are identical between both workflows. When we examine 9 assembly/annotation workflow scenarios as input to a three-way genome comparison, differentiating genes and even differentially represented functional categories change significantly from scenario to scenario. CONCLUSIONS: Inconsistencies in genomic analysis can arise depending on the choices that are made during the assembly and annotation stages. These inconsistencies can have a significant impact on the interpretation of an individual genome's content. The impact is multiplied when comparison of content and function among multiple genomes is the goal. Tracking the analysis history of the data--its analytic provenance--is critical for reproducible analysis of genome data.


Assuntos
Genes Bacterianos , Genoma Bacteriano , Análise de Sequência de DNA , Vibrio vulnificus/genética , Biologia Computacional , DNA Bacteriano/genética , Anotação de Sequência Molecular
2.
Sci Total Environ ; : 174515, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971244

RESUMO

During the SARS-CoV-2 pandemic, genome-based wastewater surveillance sequencing has been a powerful tool for public health to monitor circulating and emerging viral variants. As a medium, wastewater is very complex because of its mixed matrix nature, which makes the deconvolution of wastewater samples more difficult. Here we introduce a gold standard dataset constructed from synthetic viral control mixtures of known composition, spiked into a wastewater RNA matrix and sequenced on the Oxford Nanopore Technologies platform. We compare the performance of eight of the most commonly used deconvolution tools in identifying SARS-CoV-2 variants present in these mixtures. The software evaluated was primarily chosen for its relevance to the CDC wastewater surveillance reporting protocol, which until recently employed a pipeline that incorporates results from four deconvolution methods: Freyja, kallisto, Kraken 2/Bracken, and LCS. We also tested Lollipop, a deconvolution method used by the Swiss SARS-CoV-2 Sequencing Consortium, and three additional methods not used in the C-WAP pipeline: lineagespot, Alcov, and VaQuERo. We found that the commonly used software Freyja outperformed the other CDC pipeline tools in correct identification of lineages present in the control mixtures, and that the VaQuERo method was similarly accurate, with minor differences in the ability of the two methods to avoid false negatives and suppress false positives. Our results also provide insight into the effect of the tiling primer scheme and wastewater RNA extract matrix on viral sequencing and data deconvolution outcomes.

5.
BMC Bioinformatics ; 9: 452, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18947404

RESUMO

BACKGROUND: High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data, which can have serious implications for the interpretation of the generated data if not estimated correctly. RESULTS: We introduce an approach to calculate probe affinity based on sequence composition, incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide information, instead of the original single nucleotide approach, and adds up to 10% to the total variance explained (R2) when compared to the previously published model. We demonstrate that correcting for background noise using this approach enhances the performance of the GCRMA preprocessing algorithm when applied to control datasets, especially for detecting low intensity targets. CONCLUSION: Modifying the previously published position-dependent affinity model to incorporate dinucleotide information significantly improves the performance of the model. The dinucleotide affinity model enhances the detection of differentially expressed genes when implemented as a background correction procedure in GeneChip preprocessing algorithms. This is conceptually consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking interactions in addition to base-pairing.


Assuntos
Artefatos , Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/química , Animais , Análise por Conglomerados , Transferência de Energia , Perfilação da Expressão Gênica/métodos , Humanos , Reprodutibilidade dos Testes
6.
Comput Biol Chem ; 31(2): 92-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17387043

RESUMO

High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays.


Assuntos
Perfilação da Expressão Gênica , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Sondas de Oligonucleotídeos/química , Software , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos
7.
Front Microbiol ; 8: 86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194141

RESUMO

Vibrio toranzoniae is a Gram-negative bacterium of the Splendidus clade within the Vibrio genus. V. toranzoniae was first isolated from healthy clams in Galicia (Spain) but recently was also identified associated to disease outbreaks of red conger eel in Chile. Experimental challenges showed that the Chilean isolates were able to produce fish mortalities but not the strains isolated from clams. The aim of the present study was to determine the differences at the genomic level between the type strain of the species (CECT 7225T) and the strain R17, isolated from red conger eel in Chile, which could explain their different virulent capacity. The genome-based comparison showed high homology between both strains but differences were observed in certain gene clusters that include some virulence factors. Among these, we found that iron acquisition systems and capsule synthesis genes were the main differential features between both genomes that could explain the differences in the pathogenicity of the strains. Besides, the studied genomes presented genomic islands and toxins, and the R17 strain presented CRISPR sequences that are absent on the type strain. Taken together, this analysis provided important insights into virulence factors of V. toranzoniae that will lead to a better understanding of the pathogenic process.

8.
Front Microbiol ; 8: 2613, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29358930

RESUMO

Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."

9.
BMC Microbiol ; 6: 13, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16504063

RESUMO

BACKGROUND: Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. RESULTS: We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. CONCLUSION: Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.


Assuntos
Técnicas de Tipagem Bacteriana , Brucella/classificação , Reação em Cadeia da Polimerase/métodos , Brucella/genética , Brucella/isolamento & purificação , Biologia Computacional , Genes Bacterianos , Variação Genética , Genoma Bacteriano , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
10.
Genome Announc ; 4(2)2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27034502

RESUMO

Vibrio toranzoniae(CECT 7225(T)) was isolated from healthy reared carpet shell clams in Galicia (Northwest Spain). In addition, this species has been recently identified as a potential pathogen of red conger eel in Chile. The draft genome sequence has 4.5 Mbp, a G+C content of 43.9%, and >3,800 protein-coding genes.

11.
BMC Genomics ; 6: 31, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15755320

RESUMO

BACKGROUND: Secondary structure in the target is a property not usually considered in software applications for design of optimal custom oligonucleotide probes. It is frequently assumed that eliminating self-complementarity, or screening for secondary structure in the probe, is sufficient to avoid interference with hybridization by stable secondary structures in the probe binding site. Prediction and thermodynamic analysis of secondary structure formation in a genome-wide set of transcripts from Brucella suis 1330 demonstrates that the properties of the target molecule have the potential to strongly influence the rate and extent of hybridization between transcript and tethered oligonucleotide probe in a microarray experiment. RESULTS: Despite the relatively high hybridization temperatures and 1M monovalent salt imposed in the modeling process to approximate hybridization conditions used in the laboratory, we find that parts of the target molecules are likely to be inaccessible to intermolecular hybridization due to the formation of stable intramolecular secondary structure. For example, at 65 degrees C, 28 +/- 7% of the average cDNA target sequence is predicted to be inaccessible to hybridization. We also analyzed the specific binding sites of a set of 70mer probes previously designed for Brucella using a freely available oligo design software package. 21 +/- 13% of the nucleotides in each probe binding site are within a double-stranded structure in over half of the folds predicted for the cDNA target at 65 degrees C. The intramolecular structures formed are more stable and extensive when an RNA target is modeled rather than cDNA. When random shearing of the target is modeled for fragments of 200, 100 and 50 nt, an overall destabilization of secondary structure is predicted, but shearing does not eliminate secondary structure. CONCLUSION: Secondary structure in the target is pervasive, and a significant fraction of the target is found in double stranded conformations even at high temperature. Stable structure in the target has the potential to interfere with hybridization and should be a factor in interpretation of microarray results, as well as an explicit criterion in array design. Inclusion of this property in an oligonucleotide design procedure would change the definition of an optimal oligonucleotide significantly.


Assuntos
Brucella suis/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Bactérias/química , Sítios de Ligação , Biofísica/métodos , Biologia Computacional , Genoma Bacteriano , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Oligonucleotídeos/química , Desnaturação Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/metabolismo , Temperatura , Termodinâmica
12.
PLoS One ; 9(12): e114376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489854

RESUMO

Vibrio vulnificus is a natural inhabitant of estuarine waters worldwide and is of medical relevance due to its ability to cause grievous wound infections and/or fatal septicemia. Genetic polymorphisms within the virulence-correlated gene (vcg) serve as a primary feature to distinguish clinical (C-) genotypes from environmental (E-) genotypes. C-genotypes demonstrate superior survival in human serum relative to E-genotypes, and genome comparisons have allowed for the identification of several putative virulence factors that could potentially aid C-genotypes in disease progression. We used RNA sequencing to analyze the transcriptome of C-genotypes exposed to human serum relative to seawater, which revealed two divergent genetic programs under these two conditions. In human serum, cells displayed a distinct "virulence profile" in which a number of putative virulence factors were upregulated, including genes involved in intracellular signaling, substrate binding and transport, toxin and exoenzyme production, and the heat shock response. Conversely, the "environmental profile" exhibited by cells in seawater revealed upregulation of transcription factors such as rpoS, rpoN, and iscR, as well as genes involved in intracellular signaling, chemotaxis, adherence, and biofilm formation. This dichotomous genetic switch appears to be largely governed by cyclic-di-GMP signaling, and remarkably resembles the dual life-style of V. cholerae as it transitions from host to environment. Furthermore, we found a "general stress response" module, known as the stressosome, to be upregulated in seawater. This signaling system has been well characterized in Gram-positive bacteria, however its role in V. vulnificus is not clear. We examined temporal gene expression patterns of the stressosome and found it to be upregulated in natural estuarine waters indicating that this system plays a role in sensing and responding to the environment. This study advances our understanding of gene regulation in V. vulnificus, and brings to the forefront a number of previously overlooked genetic networks.


Assuntos
Meio Ambiente , Estuários , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Quimiotaxia/genética , Genótipo , Humanos , Espaço Intracelular/metabolismo , Água do Mar/microbiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Vibrio vulnificus/citologia , Vibrio vulnificus/isolamento & purificação , Virulência/genética
13.
BMC Res Notes ; 6: 72, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23445545

RESUMO

BACKGROUND: Hybridization based assays and capture systems depend on the specificity of hybridization between a probe and its intended target. A common guideline in the construction of DNA microarrays, for instance, is that avoiding complementary stretches of more than 15 nucleic acids in a 50 or 60-mer probe will eliminate sequence specific cross-hybridization reactions. Here we present a study of the behavior of partially matched oligonucleotide pairs with complementary stretches starting well below this threshold complementarity length - in silico, in solution, and at the microarray surface. The modeled behavior of pairs of oligonucleotide probes and their targets suggests that even a complementary stretch of sequence 12 nt in length would give rise to specific cross-hybridization. We designed a set of binding partners to a 50-mer oligonucleotide containing complementary stretches from 6 nt to 21 nt in length. RESULTS: Solution melting experiments demonstrate that stable partial duplexes can form when only 12 bp of complementary sequence are present; surface hybridization experiments confirm that a signal close in magnitude to full-strength signal can be obtained from hybridization of a 12 bp duplex within a 50mer oligonucleotide. CONCLUSIONS: Microarray and other molecular capture strategies that rely on a 15 nt lower complementarity bound for eliminating specific cross-hybridization may not be sufficiently conservative.


Assuntos
Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Análise de Sequência com Séries de Oligonucleotídeos , Soluções , Propriedades de Superfície
14.
PLoS One ; 7(10): e46401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056299

RESUMO

Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.


Assuntos
Genoma Bacteriano , Brucella/genética
15.
PLoS One ; 7(5): e37553, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662170

RESUMO

Between 1996 and 2006, the US Centers for Disease Control reported that the only category of food-borne infections increasing in frequency were those caused by members of the genus Vibrio. The gram-negative bacterium Vibrio vulnificus is a ubiquitous inhabitant of estuarine waters, and is the number one cause of seafood-related deaths in the US. Many V. vulnificus isolates have been studied, and it has been shown that two genetically distinct subtypes, distinguished by 16S rDNA and other gene polymorphisms, are associated predominantly with either environmental or clinical isolation. While local genetic differences between the subtypes have been probed, only the genomes of clinical isolates have so far been completely sequenced. In order to better understand V. vulnificus as an agent of disease and to identify the molecular components of its virulence mechanisms, we have completed whole genome shotgun sequencing of three diverse environmental genotypes using a pyrosequencing approach. V. vulnificus strain JY1305 was sequenced to a depth of 33×, and strains E64MW and JY1701 were sequenced to lesser depth, covering approximately 99.9% of each genome. We have performed a comparative analysis of these sequences against the previously published sequences of three V. vulnificus clinical isolates. We find that the genome of V. vulnificus is dynamic, with 1.27% of genes in the C-genotype genomes not found in the E- genotype genomes. We identified key genes that differentiate between the genomes of the clinical and environmental genotypes. 167 genes were found to be specifically associated with environmental genotypes and 278 genes with clinical genotypes. Genes specific to the clinical strains include components of sialic acid catabolism, mannitol fermentation, and a component of a Type IV secretory pathway VirB4, as well as several other genes with potential significance for human virulence. Genes specific to environmental strains included several that may have implications for the balance between self-preservation under stress and nutritional competence.


Assuntos
Genoma Bacteriano , Análise de Sequência de DNA , Vibrio vulnificus/genética , Mapeamento Cromossômico , Ordem dos Genes , Genes Bacterianos , Genótipo , Anotação de Sequência Molecular , Filogenia , Alimentos Marinhos/microbiologia , Vibrio vulnificus/classificação , Vibrio vulnificus/isolamento & purificação
16.
PLoS One ; 5(12): e14464, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21209932

RESUMO

BACKGROUND: Microarray technology is a commonly used tool for assessing global gene expression. Many models for estimation of target concentration based on observed microarray signal have been proposed, but, in general, these models have been complex and platform-dependent. PRINCIPAL FINDINGS: We introduce a universal Langmuir model for estimation of absolute target concentration from microarray experiments. We find that this sequence-independent model, characterized by only three free parameters, yields excellent predictions for four microarray platforms, including Affymetrix, Agilent, Illumina and a custom-printed microarray. The model also accurately predicts concentration for the MAQC data sets. This approach significantly reduces the computational complexity of quantitative target concentration estimates. CONCLUSIONS: Using a simple form of the Langmuir isotherm model, with a minimum of parameters and assumptions, and without explicit modeling of individual probe properties, we were able to recover absolute transcript concentrations with high R(2) on four different array platforms. The results obtained here suggest that with a "spiked-in" concentration series targeting as few as 5-10 genes, reliable estimation of target concentration can be achieved for the entire microarray.


Assuntos
Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Calibragem , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Modelos Estatísticos , Hibridização de Ácido Nucleico , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
17.
PLoS One ; 5(6): e11048, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20548788

RESUMO

BACKGROUND: The probe percent bound value, calculated using multi-state equilibrium models of solution hybridization, is shown to be useful in understanding the hybridization behavior of microarray probes having 50 nucleotides, with and without mismatches. These longer oligonucleotides are in widespread use on microarrays, but there are few controlled studies of their interactions with mismatched targets compared to 25-mer based platforms. PRINCIPAL FINDINGS: 50-mer oligonucleotides with centrally placed single, double and triple mismatches were spotted on an array. Over a range of target concentrations it was possible to discriminate binding to perfect matches and mismatches, and the type of mismatch could be predicted accurately in the concentration midrange (100 pM to 200 pM) using solution hybridization modeling methods. These results have implications for microarray design, optimization and analysis methods. CONCLUSIONS: Our results highlight the importance of incorporating biophysical factors in both the design and the analysis of microarrays. Use of the probe "percent bound" value predicted by equilibrium models of hybridization is confirmed to be important for predicting and interpreting the behavior of long oligonucleotide arrays, as has been shown for short oligonucleotide arrays.


Assuntos
Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Sondas de DNA
18.
Genome Biol ; 11(10): R101, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20950453

RESUMO

BACKGROUND: Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. RESULTS: Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at preanthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. CONCLUSIONS: Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots.


Assuntos
Eschscholzia/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma de Planta , Arabidopsis/genética , Eschscholzia/crescimento & desenvolvimento , Evolução Molecular , Etiquetas de Sequências Expressas , Flores/genética , Regulação da Expressão Gênica de Plantas , Meiose , Análise de Sequência com Séries de Oligonucleotídeos , Sondas de Oligonucleotídeos/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa