Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 154(2): 285-297, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29281850

RESUMO

The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.


Assuntos
Ligante CD27/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade , Vaccinia virus , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Ligante CD27/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Imunização , Camundongos , Camundongos Knockout , Vaccinia virus/genética , Vaccinia virus/imunologia
2.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579736

RESUMO

Background Human cancers are extraordinarily heterogeneous in terms of tumor antigen expression, immune infiltration and composition. A common feature, however, is the host's inability to mount potent immune responses that prevent tumor growth effectively. Often, naturally primed CD8+ T cells against solid tumors lack adequate stimulation and efficient tumor tissue penetration due to an immune hostile tumor microenvironment.Methods To address these shortcomings, we cloned tumor-associated antigens (TAA) and the immune-stimulatory ligand 4-1BBL into the genome of modified vaccinia Ankara (MVA) for intratumoral virotherapy.Results Local treatment with MVA-TAA-4-1BBL resulted in control of established tumors. Intratumoral injection of MVA localized mainly to the tumor with minimal leakage to the tumor-draining lymph node. In situ infection by MVA-TAA-4-1BBL triggered profound changes in the tumor microenvironment, including the induction of multiple proinflammatory molecules and immunogenic cell death. These changes led to the reactivation and expansion of antigen-experienced, tumor-specific cytotoxic CD8+ T cells that were essential for the therapeutic antitumor effect. Strikingly, we report the induction of a systemic antitumor immune response including tumor antigen spread by local MVA-TAA-4-1BBL treatment which controlled tumor growth at distant, untreated lesions and protected against local and systemic tumor rechallenge. In all cases, 4-1BBL adjuvanted MVA was superior to MVA.Conclusion Intratumoral 4-1BBL-armed MVA immunotherapy induced a profound reactivation and expansion of potent tumor-specific CD8+ T cells as well as favorable proinflammatory changes in the tumor microenvironment, leading to elimination of tumors and protective immunological memory.


Assuntos
Ligante 4-1BB/genética , Antígenos de Neoplasias/genética , Melanoma Experimental/terapia , Terapia Viral Oncolítica/métodos , Vaccinia virus/fisiologia , Ligante 4-1BB/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Terapia Combinada , Sinergismo Farmacológico , Feminino , Memória Imunológica , Melanoma Experimental/imunologia , Camundongos , Resultado do Tratamento , Microambiente Tumoral , Vaccinia virus/genética
3.
Nat Commun ; 10(1): 5041, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695037

RESUMO

Virus-based vaccines and appropriate costimulation potently enhance antigen-specific T cell immunity against cancer. Here we report the use of recombinant modified vaccinia virus Ankara (rMVA) encoding costimulatory CD40L against solid tumors. Therapeutic treatment with rMVA-CD40L-expressing tumor-associated antigens results in the control of established tumors. The expansion of tumor-specific cytotoxic CD8+ T cells is essential for the therapeutic antitumor effects. Strikingly, rMVA-CD40L also induces strong natural killer (NK) cell activation and expansion. Moreover, the combination of rMVA-CD40L and tumor-targeting antibodies results in increased therapeutic antitumor efficacy relying on the presence of Fc receptor and NK cells. We describe a translationally relevant therapeutic synergy between systemic viral vaccination and CD40L costimulation. We show strengthened antitumor immune responses when both rMVA-CD40L-induced innate and adaptive immune mechanisms are exploited by combination with tumor-targeting antibodies. This immunotherapeutic approach could translate into clinical cancer therapies where tumor-targeting antibodies are employed.


Assuntos
Imunidade Adaptativa , Anticorpos Antineoplásicos/imunologia , Ligante de CD40/farmacologia , Vacinas Anticâncer/imunologia , Imunidade Inata , Imunoterapia/métodos , Neoplasias/terapia , Vacinas Virais/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Imunização , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico
4.
Front Immunol ; 8: 1988, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29416534

RESUMO

Bacterial flagellin enhances innate and adaptive immune responses and is considered a promising adjuvant for the development of vaccines against infectious diseases and cancer. Antigen-presenting cells recognize flagellin with the extracellular TLR5 and the intracellular NLRC4 inflammasome-mediated pathway. The detailed cooperation of these innate pathways in the induction of the adaptive immune response following intranasal (i.n.) administration of a recombinant modified vaccinia virus Ankara (rMVA) vaccine encoding flagellin (rMVA-flagellin) is not known. rMVA-flagellin induced enhanced secretion of mucosal IL-1ß and TNF-α resulting in elevated CTL and IgG2c antibody responses. Importantly, mucosal IgA responses were also significantly enhanced in both bronchoalveolar (BAL) and intestinal lavages accompanied by the increased migration of CD8+ T cells to the mesenteric lymph nodes (MLN). Nlrc4-/- rMVA-flagellin-immunized mice failed to enhance pulmonary CTL responses, IgG2c was lower, and IgA levels in the BAL or intestinal lavages were similar as those of control mice. Our results show the favorable adjuvant effect of rMVA-flagellin in the lung as well as the intestinal mucosa following i.n. administration with NLRC4 as the essential driver of this promising mucosal vaccine concept.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa