Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411047

RESUMO

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38870082

RESUMO

OBJECTIVES: Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on primaquine metabolism and its impact on malaria relapses. METHODS: Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping polymorphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxyprimaquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects with well-documented relapses. RESULTS: The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully active. CONCLUSIONS: We found evidence that the low-expression MAO-A variants can potentiate the negative impact of impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated pathways generating bioactive metabolites that act against the parasite.

3.
Antimicrob Agents Chemother ; 65(7): e0027521, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875422

RESUMO

Malaria remains one of the deadliest diseases in Africa, particularly for children. While successful in reducing morbidity and mortality, antimalarial treatments are also a major cause of adverse drug reactions (ADRs). Host genetic variation in genes involved in drug disposition or toxicity constitutes an important determinant of ADR risk and can prime for parasite drug resistance. Importantly, however, the genetic diversity in Africa is substantial, and thus, genetic profiles in one population cannot be reliably extrapolated to other ethnogeographic groups. Gabon is considered a high-transmission country, with more than 460,000 malaria cases per year. Yet the pharmacogenetic landscape of the Gabonese population or its neighboring countries has not been analyzed. Using targeted sequencing, here, we profiled 21 pharmacogenes with importance for antimalarial treatment in 48 Gabonese pediatric patients with severe Plasmodium falciparum malaria. Overall, we identified 347 genetic variants, of which 18 were novel, and each individual was found to carry 87.3 ± 9.2 (standard deviation [SD]) variants across all analyzed genes. Importantly, 16.7% of these variants were population specific, highlighting the need for high-resolution pharmacogenomic profiling. Between one in three and one in six individuals harbored reduced-activity alleles of CYP2A6, CYP2B6, CYP2D6, and CYP2C8 with important implications for artemisinin, chloroquine, and amodiaquine therapy. Furthermore, one in three patients harbored at least one G6PD-deficient allele, suggesting a considerably increased risk of hemolytic anemia upon exposure to aminoquinolines. Combined, our results reveal the unique genetic landscape of the Gabonese population and pinpoint the genetic basis for interindividual differences in antimalarial drug responses and toxicity.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/efeitos adversos , Criança , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Gabão , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética
4.
Malar J ; 20(1): 90, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588856

RESUMO

BACKGROUND: The anti-malarial drug, amodiaquine, a commonly used, long-acting partner drug in artemisinin-based combination therapy, is metabolized to active desethyl-amodiaquine (DEAQ) by cytochrome P450 2C8 (CYP2C8). The CYP2C8 gene carries several polymorphisms including the more frequent minor alleles, CYP2C8*2 and CYP2C8*3. These minor alleles have been associated with decreased enzymatic activity, slowing the amodiaquine biotransformation towards DEAQ. This study aimed to assess the influence of these CYP2C8 polymorphisms on the efficacy and tolerability of artesunate-amodiaquine (AS-AQ) treatment for uncomplicated Plasmodium falciparum malaria in Zanzibar. METHODS: Dried blood spots on filter paper were collected from 618 children enrolled in two randomized clinical trials comparing AS-AQ and artemether-lumefantrine in 2002-2005 in Zanzibar. Study participant were under five years of age with uncomplicated falciparum malaria. Human CYP2C8*2 and CYP2C8*3 genotype frequencies were determined by PCR-restriction fragment length polymorphism. Statistical associations between CYP2C8*2 and/or CYP2C8*3 allele carriers and treatment outcome or occurrence of adverse events were assessed by Fisher's exact test. RESULTS: The allele frequencies of CYP2C8*2 and CYP2C8*3 were 17.5 % (95 % CI 15.4-19.7) and 2.7 % (95 % CI 1.8-3.7), respectively. There was no significant difference in the proportion of subjects carrying either CYP2C8*2 or CYP2C8*3 alleles amongst those with re-infections (44.1 %; 95 % CI 33.8-54.8) or those with recrudescent infections (48.3 %; 95 % CI 29.4-67.5), compared to those with an adequate clinical and parasitological response (36.7 %; 95 % CI 30.0-43.9) (P = 0.25 and P = 0.31, respectively). However, patients carrying either CYP2C8*2 or CYP2C8*3 alleles were significantly associated with an increased occurrence of non-serious adverse events, when compared with CYP2C8 *1/*1 wild type homozygotes (44.9 %; 95 % CI 36.1-54.0 vs. 28.1 %; 95 % CI 21.9-35.0, respectively; P = 0.003). CONCLUSIONS: CYP2C8 genotypes did not influence treatment efficacy directly, but the tolerability to AS-AQ may be reduced in subjects carrying the CYP2C8*2 and CYP2C8*3 alleles. The importance of this non-negligible association with regard to amodiaquine-based malaria chemotherapy warrants further investigation.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Citocromo P-450 CYP2C8/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Pré-Escolar , Combinação de Medicamentos , Humanos , Lactente , Recém-Nascido , Tanzânia
5.
Emerg Infect Dis ; 24(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29798744

RESUMO

Dihydroartemisinin/piperaquine (DHA/PPQ) is increasingly deployed as antimalaria drug in Africa. We report the detection in Mali of Plasmodium falciparum infections carrying plasmepsin 2 duplications (associated with piperaquine resistance) in 7/65 recurrent infections within 2 months after DHA/PPQ treatment. These findings raise concerns about the long-term efficacy of DHA/PPQ treatment in Africa.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Ácido Aspártico Endopeptidases/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Quinolinas/farmacologia , Artemisininas/administração & dosagem , Combinação de Medicamentos , Resistência a Medicamentos , Humanos , Malária Falciparum/epidemiologia , Mali/epidemiologia , Projetos Piloto , Quinolinas/administração & dosagem
6.
Malar J ; 16(1): 383, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934955

RESUMO

Malaria treatment performance is potentially influenced by pharmacogenetic factors. This study reports an association study between the ABCB1 c.3435C>T, CYP3A4*1B (g.-392A>G), CYP3A5*3 (g.6986A>G) SNPs and artemether + lumefantrine treatment outcome in 103 uncomplicated malaria patients from Angola. No significant associations with the CYP3A4*1B and CYP3A5*3 were observed, while a significant predominance of the ABCB1 c.3435CC genotype was found among the recurrent infection-free patients (p < 0.01), suggesting a role for this transporter in AL inter-individual performance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Etanolaminas/farmacologia , Fluorenos/farmacologia , Genótipo , Malária/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Angola , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina , Artemisininas/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Combinação de Medicamentos , Etanolaminas/farmacocinética , Fluorenos/farmacocinética , Humanos , Prevalência , Recidiva , Resultado do Tratamento
7.
Malar J ; 15: 74, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26858018

RESUMO

Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Angola , Antimaláricos/uso terapêutico , Resistência a Medicamentos/fisiologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/fisiologia
8.
Antimicrob Agents Chemother ; 58(12): 7390-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267670

RESUMO

Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Mutação INDEL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Antimaláricos/farmacologia , Artemisininas/farmacologia , Transporte Biológico , Cloroquina/farmacologia , Cromossomos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Mefloquina/farmacologia , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo , Quinolinas/farmacologia , Tailândia
9.
Antimicrob Agents Chemother ; 57(2): 887-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208719

RESUMO

Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost, but beyond a breakpoint concentration they grew more due to a predominating benefit of increased resistance. The cost-benefit indexes indicated that pfmdr1 1246Y was most advantageous for amodiaquine-exposed parasites. In vivo, a first drug selection of mutant parasites followed by a fitness selection of wild-type parasites supported the in vitro data. This cost-benefit model may predict the risk for selection of drug resistance mutations in different malaria transmission settings.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Aptidão Genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Amodiaquina/análogos & derivados , Amodiaquina/farmacologia , Transporte Biológico/genética , Cloroquina/farmacologia , Genótipo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Mutação , Plasmodium falciparum/genética
10.
Expert Opin Drug Metab Toxicol ; 18(1): 39-59, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35285373

RESUMO

INTRODUCTION: Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED: We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION: The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/efeitos adversos , Artemisininas , Resistência a Medicamentos , Quimioterapia Combinada , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Farmacogenética , Plasmodium falciparum/genética
11.
Front Pharmacol ; 12: 759422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790129

RESUMO

The capacity of the lethal Plasmodium falciparum parasite to develop resistance against anti-malarial drugs represents a central challenge in the global control and elimination of malaria. Historically, the action of drug transporters is known to play a pivotal role in the capacity of the parasite to evade drug action. MRPs (Multidrug Resistance Protein) are known in many phylogenetically diverse groups to be related to drug resistance by being able to handle a large range of substrates, including important endogenous substances as glutathione and its conjugates. P. falciparum MRPs are associated with in vivo and in vitro altered drug response, and might be important factors for the development of multi-drug resistance phenotypes, a latent possibility in the present, and future, combination therapy environment. Information on P. falciparum MRPs is scattered in the literature, with no specialized review available. We herein address this issue by reviewing the present state of knowledge.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33360105

RESUMO

Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.


Assuntos
Antimaláricos , Malária Vivax , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Plasmodium vivax/genética , Primaquina/farmacologia , Primaquina/uso terapêutico
13.
ACS Sens ; 6(11): 3898-3911, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34735120

RESUMO

Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.


Assuntos
Hemeproteínas , Malária , Heme , Humanos , Malária/diagnóstico , Microscopia
14.
Pharmgenomics Pers Med ; 13: 571-575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33209048

RESUMO

BACKGROUND: In Eritrea, artesunate-amodiaquine is the first-line treatment against uncomplicated malaria. Amodiaquine, which is mainly bio-transformed by CYP2C8, is known to be associated with adverse events of different severity. Extrapyramidal events are among the less common but have been reported with non-negligible frequency in Eritrea. This study was conducted to investigate the allele frequencies of CYP2C8*2 and *3, both associated with decreased amodiaquine metabolism, among the Eritrean population. METHODS: During September-November 2018, dried blood samples from 380 participants and 17 patients who previously had experienced extrapyramidal symptoms following treatment of artesunate-amodiaquine were collected and PCR-RFLP genotyped for CYP2C8*2 and *3. RESULTS: The allele frequencies of CYP2C8*2 and *3 were determined as 5.9% (95% CI: 4.4-7.8) and 4.6% (95% CI: 3.2-6.3), respectively. Four out of the 17 patients with extrapyramidal reactions showed to be carriers of the alleles. CONCLUSION: CYP2C8*2 and *3 frequencies among Eritreans were found to be intermediate between the documented for Caucasian and African populations. These findings, along with the alleles not being decisive for the occurrence of extrapyramidal events, might be of importance regarding the amodiaquine-containing malaria treatment in Eritrea. Furthermore, it suggests a significant proportion of slow amodiaquine metabolizers in the Sahel region, information of potential interest in the context of amodiaquine-involving seasonal malaria chemoprevention.

15.
mBio ; 11(6)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262257

RESUMO

Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.


Assuntos
Haplótipos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Alelos , Sudeste Asiático/epidemiologia , Variações do Número de Cópias de DNA , Resistência a Medicamentos , Amplificação de Genes , Variação Genética , Geografia Médica , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos
16.
Clin Ther ; 42(8): 1595-1610.e5, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32782137

RESUMO

PURPOSE: The symposium Health and Medicines in Indigenous Populations of America was organized by the Council for International Organizations of Medical Sciences (CIOMS) Working Group on Clinical Research in Resource-Limited Settings (RLSs) and the Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF). It was aimed to share and evaluate investigators' experiences on challenges and opportunities on clinical research and pharmacogenetics. METHODS: A total of 33 members from 22 countries participated in 2 sessions: RIBEF studies on population pharmacogenetics about the relationship between ancestry with relevant drug-related genetic polymorphisms and the relationship between genotype and phenotype in Native Americans (session 1) and case examples of clinical studies in RLSs from Asia (cancer), America (diabetes and women health), and Africa (malaria) in which the participants were asked to answer in free text their experiences on challenges and opportunities to solve the problems (session 2). Later, a discourse analysis grouping common themes by affinity was conducted. FINDINGS: The main result of session 1 was that the pharmacogenetics-related ancestry of the population should be considered when designing clinical studies in RLSs. In session 2, 21 challenges and 20 opportunities were identified. The social aspects represent the largest proportion of the challenges (43%) and opportunities (55%), and some of them seem to be common. IMPLICATIONS: The main discussion points were gathered in the Declaration of Mérida/T'Hó and announced on the Parliament of Extremadura during the CIOMS-RIBEF meeting in 4 of the major Latin American autochthonous languages (Náhualth, Mayan, Miskito, and Kichwa). The declaration highlighted the following: (1) the relevance of population pharmacogenetics, (2) the sociocultural contexts (interaction with traditional medicine), and (3) the education needs of research teams for clinical research in vulnerable and autochthonous populations.


Assuntos
Pesquisa Biomédica , Farmacogenética , África , Ásia , Diabetes Mellitus/genética , Genótipo , Recursos em Saúde , Humanos , Malária/genética , Neoplasias/genética , Fenótipo , Polimorfismo Genético , Estados Unidos , Saúde da Mulher , Indígena Americano ou Nativo do Alasca
17.
Am J Trop Med Hyg ; 100(5): 1179-1186, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30860013

RESUMO

Prevalence of and risk factors associated with polymerase chain reaction (PCR)-determined Plasmodium falciparum positivity were assessed on day 3 after initiation of treatment, pre-implementation and up to 8 years post-deployment of artemether-lumefantrine as first-line treatment for uncomplicated malaria in Bagamoyo district, Tanzania. Samples originated from previously reported trials conducted between 2006 and 2014. Cytochrome b-nested PCR was used to detect malaria parasites from blood samples collected on a filter paper on day 3. Chi-square and McNemar chi-squared tests, logistic regression models, and analysis of variance were used as appropriate. Primary outcome was based on the proportion of patients with day 3 PCR-determined P. falciparum positivity. Overall, 256/584 (43.8%) of screened patients had day 3 PCR-determined positivity, whereas only 2/584 (0.3%) had microscopy-determined asexual parasitemia. Day 3 PCR-determined positivity increased from 28.0% (14/50) in 2006 to 74.2% (132/178) in 2007-2008 and declined, thereafter, to 36.0% (50/139) in 2012-2013 and 27.6% (60/217) in 2014. When data were pooled, pretreatment microscopy-determined asexual parasitemia ≥ 100,000/µL, hemoglobin < 10 g/dL, age < 5 years, temperature ≥ 37.5°C, and year of study 2007-2008 and 2012-2013 were significantly associated with PCR-determined positivity on day 3. Significant increases in P. falciparum multidrug resistance gene 1 N86 and P. falciparum chloroquine resistant transporter K76 across years were not associated with PCR-determined positivity on day 3. No statistically significant association was observed between day 3 PCR-determined positivity and PCR-adjusted recrudescence. Day 3 PCR-determined P. falciparum positivity remained common in patients treated before and after implementation of artemether-lumefantrine in Bagamoyo district, Tanzania. However, its presence was associated with pretreatment characteristics. Trials registration numbers: NCT00336375, ISRCTN69189899, NCT01998295, and NCT02090036.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Adolescente , Criança , Pré-Escolar , DNA de Protozoário/genética , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Prevalência , Primaquina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Fatores de Risco
18.
Infect Genet Evol ; 8(3): 340-5, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359278

RESUMO

The sarco/endoplasmic reticulum Ca(2+)-ATPase orthologue of Plasmodium falciparum (PfATP6) has been suggested to be involved in the mechanism of action and resistance to artemisinins, the main constituent of artemisinin-based combination therapy (ACT). In previous studies only six single-nucleotide polymorphisms (SNPs) have been described in clinical samples and field isolates. Our aim was to sequence a large number of clinical samples with different geographical origins to further explore the natural diversity of PfATP6. We sequenced three genetic regions of PfATP6 in 388 samples from 17 countries, mainly Zanzibar and Tanzania, and identified 33 SNPs, of which 29 were non-synonymous and 4 synonymous. To our knowledge 29 of these SNPs have not been described previously. Three mutations were found in high frequency in Zanzibar and Tanzania; E431K, N569K and A630S were present in respectively 31% (95% CI, 26-37%), 36% (95% CI, 30-42%), and 2% (95% CI, 1-5%) of Zanzibar samples and in 39% (95% CI, 29-51%), 29% (95% CI, 16-45%) and 7% (95% CI, 1-22%) of the Tanzania Mainland samples. No variation was found in position 263, suggested to be involved in artemisinin binding to PfATP6, or in position 769, proposed to be related to decreased sensitivity to artemether in vitro. A considerable difference in diversity was observed between the three genetic regions. In conclusion our findings show that PfATP6 is a more diverse gene than previously demonstrated. This natural variation may constitute a starting ground for artemisinin-driven progressive selection of resistant parasites.


Assuntos
ATPases Transportadoras de Cálcio/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Homologia de Sequência de Aminoácidos , Animais , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Retículo Endoplasmático/enzimologia , Lactonas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Modelos Biológicos , Plasmodium falciparum/enzimologia , Sesquiterpenos/uso terapêutico , Tanzânia
19.
Infect Genet Evol ; 7(5): 562-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17467344

RESUMO

Despite the pharmacodynamic advantages with artemisinin-based combination therapy (ACT) and some potentially opposite molecular mechanisms of tolerance to amodiaquine (AQ)/desethylamodiaquine (DEAQ) and artesunate (ART), there is a risk for rapid decay in efficacy if the two drugs are unable to ensure mutual prevention against a selection and spread of drug-resistant parasites. We have studied if mutations in the pfcrt and pfmdr1 genes selected in recurrent infections after AQ monotherapy are also selected after AQ plus ART combination therapy. Samples for molecular analysis were derived from three clinical trials on children<5 years old with uncomplicated Plasmodium falciparum malaria; one AQ monotherapy study conducted in Kenya 2003 and two AQ plus ART combination therapy studies conducted in Zanzibar 2002-2003 and 2005, respectively. The PCR-adjusted treatment failure rates in the three studies were 19%, 8% and 9%, respectively. After monotherapy there was a significant selection of pfcrt 76T in re-infections (OR not calculable; p=0.048) and of pfmdr1 86Y in recrudescent infections (OR 8.0; p=0.048). No such selection was found after combination therapy. A selection of pfmdr1 1246Y and the pfmdr1 haplotype (a.a 86, 184, 1246) YYY was found in recrudescent infections both after monotherapy (OR 7.6; p=0.009 and OR 3.1; p=0.029) and combination therapy in 2005 (OR 3.6; p=0.017 and OR 5.4; p<0.001). Hence, pfmdr1 1246Y with synergistic or compensatory addition of pfmdr1 86Y and 184Y appears to be involved in AQ/DEAQ resistance and treatment failure. Our results suggest that ART may protect against a selection of these SNPs initially, but maybe not after continuous drug pressure in a population. However, treatment failure rate and spread of pfmdr1 SNPs may remain at a low level because of the suggested opposite selection by ART and the pharmacodynamic advantages with ACT.


Assuntos
Amodiaquina/administração & dosagem , Amodiaquina/farmacologia , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Seleção Genética , Amodiaquina/uso terapêutico , Animais , Artemisininas/uso terapêutico , Pré-Escolar , Ensaios Clínicos como Assunto , Humanos , Quênia , Proteínas de Membrana Transportadoras/genética , Razão de Chances , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Tanzânia
20.
Infect Genet Evol ; 7(5): 555-61, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17467343

RESUMO

Chloroquine resistant malaria was first reported in Guinea-Bissau in 1990 but chloroquine remains the most commonly used antimalarial in the country. Since 1990, we have conducted nearly annual standardized WHO in vitro micro-tests to assess chloroquine resistance. We have identified pfcrt 76T and other genetic polymorphisms in samples from 1992, 1993, 1995, 2004 and 2005. We have also monitored drug prescriptions for febrile illnesses. The mean proportion of in vitro tests indicating chloroquine resistance was 33% (range 14-54%) with the exception of an outlying value year 2000. The proportion of chloroquine resistant P. falciparum detected by in vitro testing did not increase over time. Pfcrt 76T was associated with chloroquine resistance but pfmdr1 86Y was not. The mean pfcrt 76T prevalence varied between 13% and 38%. The prevalence of SNPs at Pfcrt positions 76, 271, 326 and pfmdr1 position 86 did not change significantly between 1992 and 2005. In a health centre the median chloroquine dose prescribed for febrile illnesses between 1994 and 2003 was 63mg/kg. The genetic basis of chloroquine resistance appears to be the same in Guinea-Bissau as in other countries. Despite that, the prevalence of chloroquine resistant P. falciparum has not gradually increased between 1990 and 2005 in Guinea-Bissau. Chloroquine is commonly prescribed at more than double the normal dose in Guinea Bissau. It has previously been hypothesized that treatment with high doses of chloroquine may be effective. We discuss the possibility that the delayed spread of chloroquine resistant P. falciparum in Guinea-Bissau is the result of treatment with high and effective doses of chloroquine.


Assuntos
Cloroquina/administração & dosagem , Cloroquina/farmacologia , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Guiné-Bissau/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Polimorfismo de Nucleotídeo Único , Prevalência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa