Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Signal Process Control ; 66: 102490, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589862

RESUMO

Coronavirus disease (Covid-19) has been spreading all over the world and its diagnosis is attracting more research every moment. It is need of the hour to develop automated methods, which could detect this disease at its early stage, in a non-invasive way and within lesser time. Currently, medical specialists are analyzing Computed Tomography (CT), X-Ray, and Ultrasound (US) images or conducting Polymerase Chain Reaction (PCR) for its confirmation on manual basis. In Pakistan, CT scanners are available in most hospitals at district level, while X-Ray machines are available in all tehsil (large urban towns) level hospitals. Being widely used imaging modalities to analyze chest related diseases, produce large volume of medical data each moment clinical environments. Since automatic, time efficient and reliable methods for Covid-19 detection are required as alternate methods, therefore an automatic method of Covid-19 detection using Convolutional Neural Networks (CNN) has been proposed. Three publically available and a locally developed dataset, obtained from Department of Radiology (Diagnostics), Bahawal Victoria Hospital, Bahawalpur (BVHB), Pakistan have been used. The proposed method achieved on average accuracy (96.68 %), specificity (95.65 %), and sensitivity (96.24 %). Proposed model is trained on a large dataset and is being used at the Radiology Department, (BVHB), Pakistan.

2.
PLoS One ; 7(3): e33616, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479421

RESUMO

Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Cor , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa