Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 2468-2479, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534772

RESUMO

Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000128

RESUMO

Epigenetic changes are common in cancer and include aberrant DNA methylation and histone modifications, including both acetylation or methylation. DNA methylation in the promoter regions and histone deacetylation are usually accompanied by gene silencing, and may lead to the suppression of tumor suppressors in cancer cells. An interaction between epigenetic pathways has been reported that could be exploited to more efficiently target aggressive cancer cells, particularly those against which current treatments usually fail, such as pancreatic cancer. In this study, we explored the possibility to combine the DNA demethylating agent 5-AZA with HDAC inhibitor SAHA to treat pancreatic cancer cell lines, focusing on the acetylation of mutp53 and the consequences on its stability, as well as on the interaction of this protein with c-myc and BRCA-1, key molecules in cancer survival. The results obtained suggest that SAHA/5-AZA combination was more effective than single treatments to promote the degradation of mutp53, to upregulate p21 and downregulate c-Myc and BRCA-1, thus increasing DNA damage and cytotoxicity in pancreatic cancer cells.


Assuntos
Proteína BRCA1 , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteína Supressora de Tumor p53 , Vorinostat , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Vorinostat/farmacologia , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Azacitidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835344

RESUMO

Primary effusion lymphoma (PEL) is a rare and aggressive B-cell lymphoma, against which current therapies usually fail. In the present study, we show that targeting HSPs, such as HSP27, HSP70 and HSP90, could be an efficient strategy to reduce PEL cell survival, as it induces strong DNA damage, which correlated with an impairment of DDR. Moreover, as HSP27, HSP70 and HSP90 cross talk with STAT3, their inhibition results in STAT3 de-phosphorylation and. On the other hand, the inhibition of STAT3 may downregulate these HSPs. These findings suggest that targeting HSPs has important implications in cancer therapy, as it can reduce the release of cytokines by PEL cells, which, besides affecting their own survival, could negatively influence anti-cancer immune response.


Assuntos
Dano ao DNA , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Linfoma de Efusão Primária , Terapia de Alvo Molecular , Humanos , Apoptose , Linhagem Celular Tumoral , Citocinas , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/genética , Fator de Transcrição STAT3/metabolismo
4.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511362

RESUMO

NFE2L2 and STAT3 are key pro-survival molecules, and thus, their targeting may represent a promising anti-cancer strategy. In this study, we found that a positive feedback loop occurred between them and provided evidence that their concomitant inhibition efficiently impaired the survival of PEL cells, a rare, aggressive B cell lymphoma associated with the gammaherpesvirus KSHV and often also EBV. At the molecular level, we found that NFE2L2 and STAT3 converged in the regulation of several pro-survival molecules and in the activation of processes essential for the adaption of lymphoma cells to stress. Among those, STAT3 and NFE2L2 promoted the activation of pathways such as MAPK3/1 and MTOR that positively regulate protein synthesis, sustained the antioxidant response, expression of molecules such as MYC, BIRC5, CCND1, and HSP, and allowed DDR execution. The findings of this study suggest that the concomitant inhibition of NFE2L2 and STAT3 may be considered a therapeutic option for the treatment of this lymphoma that poorly responds to chemotherapies.


Assuntos
Autofagia , Linfoma de Células B , Humanos , Linfócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
5.
Carcinogenesis ; 43(3): 277-287, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-34958370

RESUMO

Reactive oxygen species (ROS) and DNA repair, respectively, promote and limit oncogenic transformation of B cells driven by Epstein-Barr virus (EBV). We have previously shown that EBV infection reduced autophagy in primary B lymphocytes and enhanced ROS and interleukin 6 (IL-6) release, promoting B-cell proliferation and immortalization. In this study, we explored the role of p62/SQSTM1, accumulated as a consequence of autophagy reduction in EBV-infected B lymphocytes, and found that it exerted a growth-suppressive effect in these cells. At the molecular level, we found that p62 counteracted IL-6 production and ROS increase by interacting with NRF2 and promoting mitophagy. Moreover, p62/NRF2 axis sustained the expression level of H2AX and ataxia-telangiectasia mutated (ATM), whose activation has been shown to have growth-suppressive effects during the first steps of EBV infection, before latency is established. In conclusion, this study shows for the first time that the accumulation of p62 and the activation of p62/axis counteracted EBV-driven proliferation of primary B lymphocytes.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Anti-Inflamatórios , Antioxidantes , Linfócitos B/metabolismo , Proliferação de Células , Humanos , Interleucina-6/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
6.
Biochem Biophys Res Commun ; 613: 19-25, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526484

RESUMO

Cancer cells, particularly MM, that are highly secretory cells, and PEL cells that harbor KSHV, are characterized by high level of stress to which they adapt by activating DDR, UPR and autophagy. It is known that UPR sensors may affect DDR, but whether DDR manipulation influences UPR is less known. In this study, we found an intricate interplay between these responses. Indeed, PARP and CHK1 inhibition by AZD2461 and UCN-01, by downregulating c-Myc, reduced the expression of XBP1s, constitutively expressed in these cells, and upregulated CHOP. Interestingly, given the role of XBP1s in regulating DDR, BRCA-1 expression level was reduced, exacerbating DNA damage. Finally, DDR/UPR interplay activated a pro-survival autophagy via PERK/eIF2alpha axis in MM and IRE1alpha/JNK axis in PEL cells, since in the latter case PERK/eIF2alpha activation could be prevented by KSHV that, as other herpesviruses, tries to avoid the blocks of protein translation that this pathway may induce.


Assuntos
Endorribonucleases , Fator de Iniciação 2 em Eucariotos , Proteína 1 de Ligação a X-Box/metabolismo , Autofagia , Dano ao DNA , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
7.
Exp Cell Res ; 408(2): 112879, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653407

RESUMO

Colon cancer is one of the most common cancers, currently treated with traditional chemotherapies or alternative therapies. However, these treatments are still not enough effective and induce several side effects, so that the search of new therapeutic strategies is needed. The use of Poly-(ADP-ribose)-polymerase (PARP) inhibitors, although originally approved against BRCA-1 or BRCA-2 mutated cancers, has been extended, particularly in combination with other treatments, to cure cancers that do not display defects in DNA repair signaling pathways. The role of p53 oncosuppressor in the regulating the outcome of PARP inhibitor treatment remains an open issue. In this study, we addressed this topic by using a well-tolerated PARP 1/2/3 inhibitor, namely AZD2461, against colon cancer cell lines with different p53 status. We found that AZD2461 reduced cell proliferation in wtp53 and p53-/- cancer cells by increasing ROS and DNA damage, while R273H mutant (mut) p53 counteracted these effects. Moreover, AZD2461 improved the reduction of cell proliferation by low dose radiation (IR) in wtp53 cancer cells, in which a down-regulation of BRCA-1 occurred. AZD2461 did not affect cell proliferation of mutp53 colon cancer cells also in combination with low dose radiation, suggesting that only wt p53 or p53 null colon cancer cells could benefit AZD2461 treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ftalazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
8.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216385

RESUMO

HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or cisplatin. In this study, we found that TSA and, even more effectively, VPA synergized with AZD2461, PARP1, 2 and 3 inhibitor (PARPi) to induce DNA damage and reduce pancreatic cancer cell survival. At a molecular level, VPA and TSA down-regulated CHK1 and RAD51, which is correlated with the interruption of the cross-talk between mutp53 and HSP70. Moreover, VPA and to a lesser extent TSA reactivated wtp53 in these cells, which contributed to CHK1 and RAD51 reduction. These findings suggest that the combination of HDACi and PARPi might improve the treatment of pancreatic cancer, which remains one of the most aggressive and therapy-resistant cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzopiranos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Fenóis/farmacologia , Ftalazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Podofilotoxina/farmacologia , Rad51 Recombinase/metabolismo , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743211

RESUMO

PEL is a rare B cell lymphoma associated with KSHV that mainly arises in immune-deficient individuals. The search for new drugs to treat this cancer is still ongoing given its aggressiveness and the poor response to chemotherapies. In this study, we found that DMF, a drug known for its anti-inflammatory properties which is registered for the treatment of psoriasis and relapsing-remitting MS, could be a promising therapeutic strategy against PEL. Indeed, although some mechanisms of resistance were induced, DMF activated NRF2, reduced ROS and inhibited the phosphorylation of STAT3 and the release of the pro-inflammatory and immune suppressive cytokines IL-6 and IL-10, which are known to sustain PEL survival. Interestingly, we observed that DMF displayed a stronger cytotoxic effect against fresh PEL cells in comparison to PEL cell lines, due to the activation of ERK1/2 and autophagy in the latter cells. This finding further encourages the possibility of using DMF for the treatment of PEL.


Assuntos
Herpesvirus Humano 8 , Linfoma de Efusão Primária , Apoptose , Linhagem Celular Tumoral , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Humanos , Linfoma de Efusão Primária/tratamento farmacológico , Recidiva Local de Neoplasia
10.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012375

RESUMO

It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared to type III latency BL cells. The other interesting finding of this study was that the inhibition of IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive B-cell lymphomas such as BL and PEL.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Inibidores de Poli(ADP-Ribose) Polimerases , Resposta a Proteínas não Dobradas , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/virologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/fisiologia , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
11.
IUBMB Life ; 73(7): 968-977, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33987937

RESUMO

Statins are inhibitors of the mevalonate pathway that besides being cholesterol lowering agents, display anti-cancer properties. This is because cholesterol is an essential component of cell membranes but also because the mevalonate pathway controls protein farnesylation and geranylation, processes essential for the activity of GTPase family proteins. In this study, we found that Lovastatin exerted a dose- and time-dependent cytotoxic effect against PEL cells, an aggressive B cell lymphoma strictly associated with the gammaherpesvirus KSHV and characterized by a poor response to conventional chemotherapies. At molecular level, Lovastatin by dephosphorylating STAT3, induced ERK1/2 activation that inhibited autophagy and phosphorylated p53ser15 that in turn maintained ERK1/2 activated and up-regulated p21. However, p21 played a pro-survival role in this setting, as its inhibition by UC2288 further reduced cell survival in PEL cells undergoing Lovastatin treatment. In conclusion, this study suggests that Lovastatin may represent a valid therapeutic alternative against PEL cells, especially if used in combination with p21 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Lovastatina/farmacologia , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tirosina/metabolismo
12.
Int J Cancer ; 147(12): 3500-3510, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559816

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of KS, an aggressive neoplasm that mainly occurs in immune-compromised patients. Spindle cells represent the main feature of this aggressive malignancy and arise from KSHV-infected endothelial cells undergoing endothelial to mesenchymal transition (EndMT), which changes their cytoskeletal composition and organization. As in epithelial to mesenchymal transition (EMT), EndMT is driven by transcription factors such as SNAI1 and ZEB1 and implies a cellular reprogramming mechanism regulated by several molecular pathways, particularly PI3K/AKT/MTOR. Here we found that KSHV activated MTOR and its targets 4EBP1 and ULK1 and reduced bulk macroautophagy and mitophagy to promote EndMT, activate ER stress/unfolded protein response (UPR), and increase the release of the pro-angiogenic and pro-inflammatory chemokine CCL2 by HUVEC cells. Our study suggests that the manipulation of macroautophagy, mitophagy and UPR and the interplay between the three could be a promising strategy to counteract EndMT, angiogenesis and inflammation, the key events of KSHV-driven sarcomagenesis.


Assuntos
Quimiocina CCL2/metabolismo , Células Endoteliais/citologia , Herpesvirus Humano 8/patogenicidade , Mitocôndrias/metabolismo , Sarcoma de Kaposi/virologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Transição Epitelial-Mesenquimal , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macroautofagia , Mitofagia , Modelos Biológicos , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Sarcoma de Kaposi/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas
13.
Br J Cancer ; 123(2): 298-306, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418990

RESUMO

BACKGROUND: Kaposi's Sarcoma Herpesvirus (KSHV) is a gammaherpesvirus strongly linked to human cancer. The virus is also able to induce immune suppression, effect that contributes to onset/progression of the viral-associated malignancies. As KSHV may infect macrophages and these cells abundantly infiltrate Kaposi's sarcoma lesions, in this study we investigated whether KSHV-infection could affect macrophage polarisation to promote tumorigenesis. METHODS: FACS analysis was used to detect macrophage markers and PD-L1 expression. KSHV infection and the molecular pathways activated were investigated by western blot analysis and by qRT-PCR while cytokine release was assessed by Multi-analyte Kit. RESULTS: We found that KSHV infection reduced macrophage survival and skewed their polarisation towards M2 like/TAM cells, based on the expression of CD163, on the activation of STAT3 and STAT6 pathways and the release of pro-tumorigenic cytokines such as IL-10, VEGF, IL-6 and IL-8. We also found that KSHV triggered Ire1 α-XBP1 axis activation in infected macrophages to increase the release of pro-tumorigenic cytokines and to up-regulate PD-L1 surface expression. CONCLUSIONS: The findings that KSHV infection of macrophages skews their polarisation towards M2/TAM and that activate Ire1 α-XBP1 to increase the release of pro-tumorigenic cytokines and the expression of PD-L1, suggest that manipulation of UPR could be exploited to prevent or improve the treatment of KSHV-associated malignancies.


Assuntos
Antígeno B7-H1/genética , Endorribonucleases/genética , Herpesvirus Humano 8/genética , Proteínas Serina-Treonina Quinases/genética , Sarcoma de Kaposi/genética , Proteína 1 de Ligação a X-Box/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Interleucina-10/genética , Interleucina-6/genética , Interleucina-8/genética , Ativação de Macrófagos/genética , Macrófagos/virologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT6/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Ativação Transcricional/genética , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Virais/genética , Replicação Viral/genética
14.
J Gen Virol ; 100(1): 89-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427305

RESUMO

Herpesviruses are known to manipulate autophagy to optimize their replication, counteract immune response and probably to promote tumourigenesis. This study explored, for the first time, the impact of human herpesvirus (HHV)-6 lytic infection on autophagy and demonstrated that HHV-6A and B (viruses sharing more than 80 % homology) differently affected this cellular process. Indeed, while HHV-6A (GS) infection of HSB2 cells promoted autophagy, HHV-6B (Z29) or the virus isolated from the serum of roseola infantum-affected patient-inhibited autophagy in Molt-3 cells or in PBMCs, respectively. Interestingly, the different behaviour of HHV-6A and B on the autophagic process was accompanied by different effects on endoplasmic reticulum stress, unfolded protein response and cell survival that was more strongly reduced by HHV-6B infection. We hypothesize that the ability to inhibit autophagy displayed by HHV-6B could be due to the fact that it contains gene homologues of those encoding for TRS1; the protein responsible for the block of autophagy by human cytomegalovirus. Understanding how HHV-6A/B infection regulates autophagy could be of particular interest, as it has been recently shown that this virus may be involved in Alzheimer's disease in which a dysregulation of autophagy may also play a role.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Herpesvirus Humano 6/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Linhagem Celular , Genótipo , Herpesvirus Humano 6/genética , Humanos , Linfócitos T/patologia , Linfócitos T/virologia
17.
Biochim Biophys Acta ; 1862(4): 805-813, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26769359

RESUMO

Type 2 is the type of diabetes with higher prevalence in contemporary time, representing about 90% of the global cases of diabetes. In the course of diabetes, several complications can occur, mostly due to hyperglycemia and increased reactive oxygen species (ROS) production. One of them is represented by an increased susceptibility to microbial infections and by a reduced capacity to clear them. Therefore, knowing the impact of hyperglycemia on immune system functionality is of utmost importance for the management of the disease. In this study, we show that medium containing high glucose reduced the in-vitro differentiation of monocytes into functional DCs and their activation mediated by PAMPs or DAMPs. Most importantly, the same effects were mediated by the hyperglycemic sera derived by type 2 diabetic patients, mimicking a more physiologic condition. DC dysfunction caused by hyperglycemia may be involved in the inefficient control of infections observed in diabetic patients, given the pivotal role of these cells in both the innate and adaptive immune response. Searching for the molecular mechanisms underlying DC dysfunction, we found that canonical Wnt/ß-catenin and p38 MAPK pathways were activated in the DCs differentiated either in the presence of high glucose or of hyper-glycemic sera. Interestingly, the activation of these pathways and the DC immune dysfunction were partially counteracted by the anti-oxidant quercetin, a flavonoid already known to exert several beneficial effects in diabetes.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 2/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Espécies Reativas de Oxigênio/imunologia , Via de Sinalização Wnt/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Glicemia , Linhagem Celular , Células Dendríticas/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Soro , beta Catenina/imunologia
18.
Autophagy ; 20(8): 1854-1867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566314

RESUMO

The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.


Assuntos
Fator 6 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Lisossomos , Serina-Treonina Quinases TOR , Tapsigargina , Proteína Supressora de Tumor p53 , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Autofagia Mediada por Chaperonas/genética , Mutação/genética , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Tunicamicina/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo
19.
Discov Oncol ; 14(1): 152, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603071

RESUMO

PD-L1 is an immune checkpoint inhibitor, whose surface expression may be exploited by cancer cells to escape T cell-mediated immune recognition. PD-L1 expression and nuclear localization can be affected by epigenetic modifications, such as acetylation. In this study, we showed that VPA, a class I/IIa HDAC inhibitor, upregulated PD-L1 expression on the surface of pancreatic cancer cells. To this effect contributed the increased transcription, in correlation with histone acetylation of the PD-L1 gene and the acetylation of PD-L1 protein, which led to an increased interaction with TRAPPC4, molecule involved in PD-L1 recycling to the cell membrane. Interestingly, the BRD4 inhibitor JQ-1, counteracted PD-L1 transcription and reduced its surface expression, suggesting that such a combination could improve the outcome of VPA treatment, also because it increased the cytotoxic effect of VPA. Also considering that this HDACi did not upregulate PD-L2 and that the supernatant of VPA-treated cancer cells did not increase PD-L1 expression on the surface of macrophages exposed to it.

20.
Viruses ; 15(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896899

RESUMO

Recent studies have shown that thyrocytes are permissive to HHV-6A infection and that the virus may contribute to the pathogenesis of autoimmune thyroiditis. Thyroid autoimmune diseases increase the risk of papillary cancer, which is not surprising considering that chronic inflammation activates pathways that are also pro-oncogenic. Moreover, in this condition, cell proliferation is stimulated as an attempt to repair tissue damage caused by the inflammatory process. Interestingly, it has been reported that the well-differentiated papillary thyroid carcinoma (PTC), the less aggressive form of thyroid tumor, may progress to the more aggressive follicular thyroid carcinoma (FTC) and eventually to the anaplastic thyroid carcinoma (ATC), and that to such progression contributes the presence of an inflammatory/immune suppressive tumor microenvironment. In this study, we investigated whether papillary tumor cells (BCPAP) could be infected by human herpes virus-6A (HHV-6A), and if viral infection could induce effects related to cancer progression. We found that the virus dysregulated the expression of several microRNAs, such as miR-155, miR-9, and the miR-221/222 cluster, which are involved in different steps of carcinogenesis, and increased the secretion of pro-inflammatory cytokines, particularly IL-6, which may also sustain thyroid tumor cell growth and promote cancer progression. Genomic instability and the expression of PTEN, reported to act as an oncogene in mutp53-carrying cells such as BCPAP, also increased following HHV-6A-infection. These findings suggest that a ubiquitous herpesvirus such as HHV-6A, which displays a marked tropism for thyrocytes, could be involved in the progression of PTC towards more aggressive forms of thyroid tumor.


Assuntos
Carcinoma Papilar , Herpesvirus Humano 6 , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide , Herpesvirus Humano 6/genética , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa