Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(14): 21174-21189, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265909

RESUMO

We developed a method for directly measuring displacement of a moving surface for use with dynamic or high explosive driven experiments. The technique, called "Modulation Based Ranging" (MBR), overcomes the errors associated with integrating a velocity history of an object undergoing non-radial flow, while also providing the exact displacement of the object with sub 100 µm resolution. A discussion of sources of phase sensitive errors is presented along with a demonstration of the applied corrections. Excellent agreement between MBR and integrated velocity from the Photonic Doppler Velocimetry (PDV) technique was observed when no non-radial flow was present. We then demonstrated the ability of MBR to accurately measure true displacement of a surface subjected to a strong non-radial component.

2.
Sensors (Basel) ; 20(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092311

RESUMO

Dynamic elastic strain in ~1.8 and 1.0 m diameter containment vessels containing a high explosive detonation was measured using an array of fiber Bragg gratings. The all-optical method, called real-time localized strain measurement, recorded the strain for 10 ms after detonation with additional measurements being sequentially made at a rate of 1.7 MHz. A swept wavelength laser source provided the repetition rate necessary for such high-speed measurements while also providing enough signal strength and bandwidth to simultaneously measure 8 or more unique points on the vessel's surface. The data presented here arethen compared with additional diagnostics consisting of a fast spectral interferometer and an optical backscatter reflectometer to show a comparison between the local and global changes in the vessel strain, both dynamically and statically to further characterize the performance of the localized strain measurement. The results are also compared with electrical resistive strain gauges and finite element analysis simulations.

3.
Sensors (Basel) ; 17(2)2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28134819

RESUMO

Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

4.
Opt Express ; 18(12): 13006-16, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588429

RESUMO

Recent progress in sub-laser-cycle gating of high-order harmonic generation promises to push the limits on optical pulse durations below the atomic unit of time, 24 as, which corresponds to a bandwidth broader than 75 eV. However, the available techniques for attosecond pulse measurement are valid only for narrow-bandwidth spectra, due to one of the key approximations made in the phase retrieval. Here we report a new technique for characterizing attosecond pulses, whereby the spectral phase of the attosecond pulse is extracted from the oscillation component with the dressing laser frequency in the photoelectron spectrogram. This technique, termed PROOF (Phase Retrieval by Omega Oscillation Filtering), can be applied to characterizing attosecond pulses with ultrabroad bandwidths.

5.
Opt Express ; 18(2): 1316-22, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173958

RESUMO

We report a new method for determining the energy resolution of time-of-flight spectrometers for detecting photoelectrons produced with attosecond XUV pulses. By measuring the width of the 2s2p autoionization line of helium, we found the resolution of our spectrometer to be approximately 0.6 eV for electrons at 35.5 eV. Furthermore, the resolution in the 10 to 35 eV range was determined by applying a retarding potential at the entrance of the drift tube.


Assuntos
Algoritmos , Fotografação/instrumentação , Fotografação/normas , Análise Espectral/instrumentação , Análise Espectral/normas , Calibragem , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
6.
Phys Rev Lett ; 105(26): 263003, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231653

RESUMO

Helium atoms in the presence of extreme ultraviolet light pulses can lose electrons through direct photoionization or through two-electron excitation followed by autoionization. Here we demonstrate that, by combining attosecond extreme ultraviolet pulses with near infrared femtosecond lasers, electron dynamics in helium autoionization can be not only monitored but also controlled. Furthermore, the interference between the two ionization channels was modified by the intense near infrared laser pulse. To the best of our knowledge, this is the first time that double excitation and autoionization were studied experimentally by using isolated attosecond pulses.

7.
Phys Rev Lett ; 105(9): 093902, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868162

RESUMO

Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.

8.
Opt Express ; 17(24): 21459-64, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997386

RESUMO

The time delay between the pump and probe pulses in attosecond time-resolved experiments, such as attosecond streaking, is commonly introduced by splitting and recombining the two pulses in an interferometer. This technique suffers from instability in the optical path lengths of the two arms due to mechanical vibration of the optical elements and fluctuating environmental conditions. We present a technique with which the instability of the unconventional interferometer is suppressed while at the same time the time delay is controlled to within 20 as RMS using a feedback loop. Using this scheme, the streaked spectrogram of an attosecond pulse was measured.


Assuntos
Interferometria/métodos , Óptica e Fotônica , Espectrofotometria/métodos , Eletrônica , Desenho de Equipamento , Lasers , Processamento de Sinais Assistido por Computador , Fatores de Tempo
9.
Opt Lett ; 34(16): 2390-2, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684792

RESUMO

We demonstrated the mapping of the spatial oscillation of electric fields in the transverse plane of a femtosecond Bessel-Gaussian laser beam from the first principle of classical electrodynamics. An attosecond burst of electrons for probing the electric force was placed in the Bessel beam through photoemission with single isolated 276 as extreme ultraviolet pulses. The direction reversal of the electric field in adjacent Bessel rings was directly confirmed by observing the momentum shift of the probe electrons.

10.
Opt Lett ; 34(21): 3337-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19881586

RESUMO

Double optical gating of high-harmonic generation was used to obtain supercontinuous spectra in the extreme UV (XUV) region including the water window. The spectra supported a 16 as pulse duration that is below one atomic unit of time (24 as). The dependence of the gated spectra on the carrier-envelope phase of the laser provided evidence that isolated attosecond pulses were generated. In addition, to ensure the temporal coherence of the XUV light, the pulse shape and phase of isolated 107 as XUV pulses using a portion of the spectrum were characterized by attosecond streaking.

11.
Phys Rev Lett ; 103(18): 183901, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905806

RESUMO

Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-core fiber and 28 fs lasers directly from an amplifier. These pulses, generated from argon gas, are measured to be 260 and 148 as by reconstructing the streaked photoelectron spectrograms. This scheme, with a relaxed requirement on laser pulse duration, makes attophysics more accessible to many laboratories that are capable of producing such multicycle laser pulses.

12.
Opt Express ; 16(19): 14448-55, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794981

RESUMO

Previously, pulses shorter than 4 fs were generated by compressing white light from gas-filled hollow-core fibers with adaptive phase modulators; however, the energy of the few-cycle pulses was limited to 15 microJ. Here, we report the generation of 550 microJ, 5 fs pulses by using a liquid crystal spatial light modulator in a grating-based 4f system. The high pulse energy was obtained by improving the throughput of the phase modulator and by increasing the input laser energy. When the pulses were used in high harmonic generation, it was found that the harmonic spectra depend strongly on the high order spectral phases of the driving laser fields.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Struct Dyn ; 2(5): 054501, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26798826

RESUMO

A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

14.
Phys Rev Lett ; 100(10): 103906, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352191

RESUMO

We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa