Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 18(8): e10855, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35959629

RESUMO

The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression.


Assuntos
Leucemia Linfocítica Crônica de Células B , Progressão da Doença , Humanos , Interleucina-4/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Nucleares/genética , Prognóstico , Fatores de Transcrição/genética , Trissomia , Microambiente Tumoral
2.
Nat Cancer ; 2(8): 853-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34423310

RESUMO

Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.


Assuntos
Leucemia Linfocítica Crônica de Células B , Metilação de DNA/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Fosforilação Oxidativa , Proteômica , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa