Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 37(3): 1194-1205, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33423497

RESUMO

Non-van der Waals (non-vdW) solids are emerging sources of two-dimensional (2D) nanosheets that can be produced via liquid-phase exfoliation (LPE), and are beginning to expand our understanding of 2D and quasi-2D materials. Recently, nanosheets formed by LPE processing of bulk metal diborides, a diverse family of layered non-vdW ceramic materials, have been reported. However, detailed knowledge of the exfoliation efficiency of these nanomaterials is lacking, and is important for their effective solution-phase processing and for understanding their fundamental surface chemistry, since they have significant differences from more conventional nanosheets produced from layered vdW compounds. Here in this paper we use Hansen solubility theory to investigate nanosheets of the metal borides CrB2 and MgB2 derived from LPE. By preparing dispersions in 33 different solvents, we determine Hansen solubility parameters (δD, δP, δH) for both these metal diborides. We find that they exhibit notably higher δP and δH values compared to conventional vdW materials such as graphene and MoS2, likely as a result of the types of bonds broken in such materials from exfoliation which allows for more favorable interactions with more polar and hydrogen-bonding solvents. We apply the solubility parameters to identify cosolvent blends suitable for CrB2 and MgB2 that produce dispersions with concentrations that match or exceed those of the top-performing individual solvents for each material and that have markedly higher stability compared to the constituent solvents of the blends alone. This work provides insight into the exfoliation effectiveness of different solvents for preparation of nanosheets from metal diborides and non-vdW materials in general. Such knowledge will be crucial for developing liquid-phase exfoliation strategies for incorporating these materials in applications such as nanocomposites, inks, and coatings.

2.
Langmuir ; 34(3): 1084-1091, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29148778

RESUMO

We report the use of gold nanoparticle surface chemistry as a tool for site-selective noble metal deposition onto colloidal gold nanoparticle substrates. Specifically, we demonstrate that partial passivation of the gold nanoparticle surface using thiolated ligands can induce a transition from linear palladium island deposition to growth of palladium selectively at plasmonic hotspots on the edges or vertices of the underlying particle substrate. Further, we demonstrate the broader applicability of this approach with respect to substrate morphology (e.g., prismatic and rod-shaped nanoparticles), secondary metal (e.g., palladium, gold, and platinum), and surface ligand (e.g., surfactant molecules and n-alkanethiols). Taken together, these results demonstrate the important role of metal-ligand surface chemistry and ligand packing density on the resulting modes of multimetallic nanoparticle growth, and in particular, the ability to direct that growth to particle regions of impact such as plasmonic hotspots.

3.
Nanoscale ; 13(3): 1652-1662, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428702

RESUMO

Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B4C), the third hardest known material, into ultrathin nanosheets. B4C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B4C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B4C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B4C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at the surface. Atomic force microscopy (AFM) shows that the nanosheets produced by LPE are as thin as 5 nm, with an average thickness of 31.4 nm and average area of 16 000 nm2. Raman spectroscopy shows that many of the nanosheets exhibit additional carbon-rich peaks that change with laser irradiation, which are attributed to atomic rearrangements and amorphization at the nanosheet surfaces, consistent with the diverse cleavage planes. High-resolution transmission electron microscopy (HRTEM) demonstrates that many different cleavage planes exist among the exfoliated nanosheets, in agreement with DFT simulations. This work elucidates the exfoliation mechanism of 2D B4C and suggests that LPE can be applied to generate nanosheets from a variety of non-layered and non-vdW materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa