Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33278361

RESUMO

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell ; 78(3): 396-410.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169162

RESUMO

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Assuntos
Replicação do DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Proteínas Serina-Treonina Quinases/genética , Origem de Replicação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell ; 77(2): 395-410.e3, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759824

RESUMO

The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Nucleossomos/genética , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Coesinas
4.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270107

RESUMO

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Assuntos
Cromatina/genética , Reparo do DNA/genética , Histonas/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos , Células K562 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
5.
Genes Dev ; 31(23-24): 2405-2415, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330352

RESUMO

Initiation of eukaryotic chromosome replication follows a spatiotemporal program. The current model suggests that replication origins compete for a limited pool of initiation factors. However, it remains to be answered how these limiting factors are preferentially recruited to early origins. Here, we report that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. This interaction is mediated by the Dbf4 C terminus and was successfully reconstituted in vitro. An interaction-defective mutant, dbf4ΔC, phenocopies fkh alleles in terms of origin firing. Remarkably, genome-wide replication profiles reveal that the direct fusion of the DNA-binding domain (DBD) of Fkh1 to Dbf4 restores the Fkh-dependent origin firing but interferes specifically with the pericentromeric origin activation. Furthermore, Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. These data suggest that Fkh1 targets Dbf4 to a subset of noncentromeric origins to promote early replication in a manner that is reminiscent of the recruitment of Dbf4 to pericentromeric origins by Ctf19.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico/genética , Mutação , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069323

RESUMO

Presenilin 1 (PS1) forms, via its large cytosolic loop, a trimeric complex with N-cadherin and ß-catenin, which is a key component of Wnt signaling. PS1 undergoes phosphorylation at 353 and 357 serines upon enhanced activity and elevated levels of the GSK3ß isoform. PS1 mutations surrounding these serines may alter the stability of the ß-catenin complex. Such mutations are found in some cases of familial early-onset Alzheimer's disease (fEOAD), but their functional impact remains obscure. One of such variants of PS1, the A360T substitution, is located close to GSK3ß-targeted serine residues. This variant was recently demonstrated in the French population, but more detail is needed to understand its biological effects. To assess the significance of this variant, we employed functional studies using a fibroblast cell line from an Alzheimer's disease case (a female proband) carrying the A360T mutation. Based on functional transcriptomic, cellular, and biochemical assays, we demonstrated atypically impaired ß-catenin/GSK3ß signaling in the A360T patient's fibroblasts. In detail, this was characterized by a decreased level of active cytosolic ß-catenin and bound by PS1, an increased level of nuclear ß-catenin, an increased level of inhibited GSK3ß phosphorylated on Ser9, and enhanced interaction of GSK3ß(Ser9) with PS1. Based on the transcriptomic profile of the A360T fibroblasts, we proposed a dysregulated transcriptional activity of ß-catenin, exemplified by increased expression of various cyclin-dependent kinases and cyclins, such as cyclin D1, potentially inducing neurons' cell cycle re-entry followed by apoptosis. The A360T cells did not exhibit significant amyloid pathology. Therefore, cell death in this PS1 cytosolic loop mutation may be attributed to impaired ß-catenin/GSK3ß signaling rather than amyloid deposition per se. We further estimated the biological and clinical relevance of the A360T variant by whole exome sequencing (WES). WES was performed on DNA from the blood of an A360T female proband, as well as an unrelated male patient carrying the A360T mutation and his mutation-free daughter (both unavailable for the derivation of the fibroblast cell lines). WES confirmed the highest-priority AD causality of the A360T variant in PS1 and also profiled the pathways and processes involved in the A360T case, highlighting the greatest importance of altered Wnt signaling.


Assuntos
Doença de Alzheimer , beta Catenina , Feminino , Masculino , Humanos , beta Catenina/genética , Doença de Alzheimer/genética , Glicogênio Sintase Quinase 3 beta/genética , Transativadores/genética , Presenilina-1/genética , Mutação , Expressão Gênica
7.
Mol Cell ; 54(4): 691-7, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24856221

RESUMO

In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins, whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3Δ cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.


Assuntos
Replicação do DNA , DNA Ribossômico/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , Epigênese Genética , Deleção de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Genes Dev ; 26(17): 1911-25, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22899009

RESUMO

C16orf57 encodes a human protein of unknown function, and mutations in the gene occur in poikiloderma with neutropenia (PN), which is a rare, autosomal recessive disease. Interestingly, mutations in C16orf57 were also observed among patients diagnosed with Rothmund-Thomson syndrome (RTS) and dyskeratosis congenita (DC), which are caused by mutations in genes involved in DNA repair and telomere maintenance. A genetic screen in Saccharomyces cerevisiae revealed that the yeast ortholog of C16orf57, USB1 (YLR132C), is essential for U6 small nuclear RNA (snRNA) biogenesis and cell viability. Usb1 depletion destabilized U6 snRNA, leading to splicing defects and cell growth defects, which was suppressed by the presence of multiple copies of the U6 snRNA gene SNR6. Moreover, Usb1 is essential for the generation of a unique feature of U6 snRNA; namely, the 3'-terminal phosphate. RNAi experiments in human cells followed by biochemical and functional analyses confirmed that, similar to yeast, C16orf57 encodes a protein involved in the 2',3'-cyclic phosphate formation at the 3' end of U6 snRNA. Advanced bioinformatics predicted that C16orf57 encodes a phosphodiesterase whose putative catalytic activity is essential for its function in vivo. Our results predict an unexpected molecular basis for PN, DC, and RTS and provide insight into U6 snRNA 3' end formation.


Assuntos
Mutação , Neutropenia/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Processamento de Terminações 3' de RNA/genética , RNA Nuclear Pequeno/metabolismo , Síndrome de Rothmund-Thomson/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Neutropenia/enzimologia , Diester Fosfórico Hidrolases/química , Estrutura Terciária de Proteína , Interferência de RNA , Estabilidade de RNA/genética , Síndrome de Rothmund-Thomson/enzimologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
RNA ; 23(12): 1902-1926, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947555

RESUMO

Noncanonical RNA nucleotidyltransferases (NTases), including poly(A), poly(U) polymerases (PAPs/PUPs), and C/U-adding enzymes, modify 3'-ends of different transcripts affecting their functionality and stability. They contain PAP/OAS1 substrate-binding domain (SBD) with inserted NTase domain. Aspergillus nidulans CutA (AnCutA), synthesizes C/U-rich 3'-terminal extensions in vivo. Here, using high-throughput sequencing of the 3'-RACE products for tails generated by CutA proteins in vitro in the presence of all four NTPs, we show that even upon physiological ATP excess synthesized tails indeed contain an unprecedented number of cytidines interrupted by uridines and stretches of adenosines, and that the majority end with two cytidines. Strikingly, processivity assays documented that in the presence of CTP as a sole nucleotide, the enzyme terminates after adding two cytidines only. Comparison of our CutA 3D model to selected noncanonical NTases of known structures revealed substantial differences in the nucleotide recognition motif (NRM) within PAP/OAS1 SBD. We demonstrate that CutA specificity toward CTP can be partially changed to PAP or PUP by rational mutagenesis within NRM and, analogously, Cid1 PUP can be converted into a C/U-adding enzyme. Collectively, we suggest that a short cluster of amino acids within NRM is a determinant of NTases' substrate preference, which may allow us to predict their specificity.


Assuntos
Aspergillus nidulans/enzimologia , Biologia Computacional/métodos , Citidina Trifosfato/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Citidina/química , Citidina Trifosfato/química , Modelos Moleculares , Homologia de Sequência , Especificidade por Substrato
10.
Blood ; 129(18): 2479-2492, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270450

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.


Assuntos
Proliferação de Células/fisiologia , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ilhas de CpG/fisiologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout , Proteínas Supressoras da Sinalização de Citocina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
BMC Psychiatry ; 19(1): 221, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311510

RESUMO

Following publication of the original article [1], we have been notified that some important information was omitted by the authors from the Competing interests section. The declaration should read as below.

12.
Nucleic Acids Res ; 45(12): 6995-7020, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28575517

RESUMO

PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence-structure-function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.


Assuntos
Desoxirribonucleases/química , Desoxirribonucleases/classificação , Ribonucleases/química , Ribonucleases/classificação , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Bacteriófagos/enzimologia , Bacteriófagos/genética , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Fungos/enzimologia , Fungos/genética , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Estrutura Terciária de Proteína , Ribonucleases/genética , Ribonucleases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
Nucleic Acids Res ; 45(20): 11479-11494, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29040665

RESUMO

The His-Me finger endonucleases, also known as HNH or ßßα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.


Assuntos
Domínio Catalítico , Endonucleases/classificação , Endonucleases/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , Endonucleases/genética , Alinhamento de Sequência
14.
Proc Natl Acad Sci U S A ; 113(29): E4190-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402735

RESUMO

The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.


Assuntos
Proteínas Arqueais/química , Proteína com Valosina/química , Proteínas Arqueais/genética , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Thermoplasma/enzimologia , Thermoplasma/genética , Proteína com Valosina/genética
15.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234450

RESUMO

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Assuntos
Dolicóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosiltransferases/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicóis/análise , Fungos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/química , Trichoderma/metabolismo
16.
Biochemistry ; 57(6): 963-977, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29309127

RESUMO

The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.


Assuntos
Oxirredutases do Álcool/química , Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Hidroxipiruvato Redutase/química , Sinorhizobium meliloti/enzimologia , Oxirredutases do Álcool/classificação , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/classificação , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Hidroxipiruvato Redutase/classificação , Hidroxipiruvato Redutase/genética , Hidroxipiruvato Redutase/metabolismo , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Sinorhizobium meliloti/química , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Especificidade por Substrato
17.
BMC Evol Biol ; 18(1): 199, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577795

RESUMO

BACKGROUND: The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS: We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS: The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/classificação , Bases de Conhecimento , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Coenzimas/metabolismo , Funções Verossimilhança , Filogenia , Especificidade por Substrato
18.
BMC Genomics ; 19(1): 621, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126366

RESUMO

BACKGROUND: Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci. RESULTS: We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system. CONCLUSION: We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.


Assuntos
Transferência Genética Horizontal/genética , Genoma Bacteriano , Staphylococcus lugdunensis/genética , Sistemas CRISPR-Cas/genética , Humanos , Filogenia , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Virulência , Fatores de Virulência/genética
19.
Plant Physiol ; 174(1): 27-34, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28298478

RESUMO

H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histonas/genética , Filogenia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Histonas/classificação , Histonas/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Especificidade da Espécie
20.
BMC Genet ; 19(1): 85, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231850

RESUMO

BACKGROUND: Approximately 90% of colorectal cancer (CRC) deaths are caused by tumors ability to migrate into the adjacent tissues and metastase into distant organs. More than 40 genes have been causally linked to the development of CRC but no mutations have been associated with metastasis yet. To identify molecular basis of CRC metastasis we performed whole-exome and genome-scale transcriptome sequencing of 7 liver metastases along with their matched primary tumours and normal tissue. Multiple, spatially separated fragments of primary tumours were analyzed in each case. Uniformly malignant tissue specimen were selected with macrodissection, for three samples followed with laser microdissection. RESULTS: > 100 sequencing coverage allowed for detection of genetic alterations in subpopulation of tumour cells. Mutations in KRAS, APC, POLE, and PTPRT, previously associated with CRC development, were detected in most patients. Several new associations were identified, including PLXND1, CELSR3, BAHD1 and PNPLA6. CONCLUSIONS: We confirm the essential role of inflammation in CRC progression but question the mechanism of matrix metalloproteinases activation described in other work. Comprehensive sequencing data made it possible to associate genome-scale mutation distribution with gene expression patterns. To our knowledge, this is the first work to report such link in CRC metastasis context.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Hepáticas/genética , Mutação , Metástase Neoplásica/genética , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Exoma , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/secundário , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa