Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144413

RESUMO

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação
2.
Eur J Neurosci ; 54(9): 7109-7124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655118

RESUMO

Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.


Assuntos
Hipocampo , Oxigênio , Resiliência Psicológica , Estresse Psicológico/psicologia , Aeronaves , Animais , Ansiedade , Depressão , Camundongos , Pressão Parcial
3.
Neuropharmacology ; 238: 109642, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392820

RESUMO

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Assuntos
Síndrome de Angelman , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Hidrólise , Modelos Animais de Doenças , Camundongos Knockout , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas de Transporte , Proteína do X Frágil da Deficiência Intelectual/metabolismo
4.
Front Pharmacol ; 13: 913210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721218

RESUMO

The epigenetic agents, L-acetylcarnitine (LAC) and L-methylfolate (MF) are putative candidates as add-on drugs in depression. We evaluated the effect of a combined treatment with LAC and MF in two different paradigms of chronic stress in mice and in human inducible pluripotent stem cells (hiPSCs) differentiated into dopaminergic neurons. Two groups of mice were exposed to chronic unpredictable stress (CUS) for 28 days or chronic restraint stress (CRS) for 21 day, and LAC (30 or 100 mg/kg) and/or MF (0.75 or 3 mg/kg) were administered i.p. once a day for 14 days, starting from the last week of stress. In both stress paradigms, LAC and MF acted synergistically in reducing the immobility time in the forced swim test and enhancing BDNF protein levels in the frontal cortex and hippocampus. In addition, LAC and MF acted synergistically in enhancing type-2 metabotropic glutamate receptor (mGlu2) protein levels in the hippocampus of mice exposed to CRS. Interestingly, CRS mice treated with MF showed an up-regulation of NFκB p65, which is a substrate for LAC-induced acetylation. We could also demonstrate a synergism between LAC and MF in cultured hiPSCs differentiated into dopamine neurons, by measuring dendrite length and number, and area of the cell soma after 3 days of drug exposure. These findings support the combined use of LAC and MF in the treatment of MDD and other stress-related disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa