Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(12): e3002420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060452

RESUMO

The Microbiome Sciences are at a crucial maturation stage. Scientists and educators should now view the Microbiome Sciences as a flourishing and autonomous discipline, creating degree programs and departments that are conducive to cohesive growth.


Assuntos
Currículo , Microbiota
2.
Am J Bot ; 108(10): 1824-1837, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34655479

RESUMO

Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.


Assuntos
Mudança Climática , Plantas , Biodiversidade , Desenvolvimento Vegetal , Estações do Ano , Simbiose
3.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086307

RESUMO

Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.


Assuntos
Citrus/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/fisiologia , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia
4.
Microbiol Resour Announc ; 12(5): e0010123, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37042758

RESUMO

The genomes of eighteen Fusarium isolates cultured from diseased and healthy citrus trees were sequenced, assembled, and annotated. Isolate species identification was confirmed using single marker (TEF1-alpha) phylogenetic assessment. Studies of the traits and genotypes of plant-associated isolates are important to understanding the fungal contribution to phytobiomes of citrus.

5.
mBio ; 13(3): e0034322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642946

RESUMO

Emerging research indicates that plant-associated microbes can alter plant developmental timing. However, it is unclear if host phenology affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants face challenges in separating effects of tissue age from phenological driven effects on the microbiome. In contrast, evergreen perennial trees, like Citrus sinensis, retain leaves for years, allowing for uniform sampling of similarly aged leaves from the same developmental cohort. This aids in separating phenological effects on the microbiome from impacts due to annual leaf maturation/senescence. Here, we used this system to test the hypothesis that host phenology acts as a driver of microbiome composition. Citrus sinensis leaves and roots were sampled during seven phenological stages. Using amplicon-based sequencing, followed by diversity, phylogenetic, differential abundance, and network analyses, we examined changes in bacterial and fungal communities. Host phenological stage is the main determinant of microbiome composition, particularly within the foliar bacteriome. Microbial enrichment/depletion patterns suggest that microbial turnover and dispersal were driving these shifts. Moreover, a subset of community shifts were phylogenetically conserved across bacterial clades, suggesting that inherited traits contribute to microbe-microbe and/or plant-microbe interactions during specific phenophases. Plant phenology influences microbial community composition. These findings enhance understanding of microbiome assembly and identify microbes that potentially influence plant development and reproduction. IMPORTANCE Research at the forefront of plant microbiome studies indicates that plant-associated microbes can alter the timing of plant development (phenology). However, it is unclear if host phenological stage affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants can face difficulty in separating effects of tissue age from phenological driven effects on the microbiome. Evergreen perennial plants, like sweet orange, maintain mature leaves for multiple years, allowing for uniform sampling of similarly aged tissue across host reproductive stages. Using this system, multiyear sampling, and high-throughput sequencing, we identified plant phenology as a major driver of microbiome composition, particularly within the leaf-associated bacterial communities. Distinct changes in microbial patterns suggest that microbial turnover and dispersal are mechanisms driving these community shifts. Additionally, closely related bacteria have similar abundance patterns across plant stages, indicating that inherited microbial traits may influence how bacteria respond to host developmental changes. Overall, this study illustrates that plant phenology does indeed govern microbiome seasonal shifts and identifies microbial candidates that may affect plant reproduction and development.


Assuntos
Citrus sinensis , Microbiota , Idoso , Bactérias/genética , Humanos , Filogenia , Plantas
6.
ACS Nano ; 14(3): 2966-2981, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32141736

RESUMO

Crop disease control is crucial for the sustainable development of agriculture, with recent advances in nanotechnology offering a promising solution to this pressing problem. However, the efficacy of nanoparticle (NP) delivery methods has not been fully explored, and knowledge regarding the fate and mobility of NPs within trees is still largely unknown. In this study, we evaluate the efficiency of NP delivery methods and investigate the mobility and distribution of NPs with different surface coatings (citrate (Ct), polyvinylpyrrolidone (PVP), and gum Arabic (GA)) within Mexican lime citrus trees. In contrast to the limited delivery efficiency reported for foliar and root delivery methods, petiole feeding and trunk injection are able to deliver a large amount of NPs into trees, although petiole feeding takes much longer time than trunk injection (7 days vs 2 h in citrus trees). Once NPs enter plants, steric repulsive interactions between NPs and conducting tube surfaces are predicted to facilitate NP transport throughout the plant. Compared to PVP and Ct, GA is highly effective in inhibiting the aggregation of NPs in synthetic sap and enhancing the mobility of NPs in trees. Over a 7 day experimental period, the majority of the Ag recovered from trees (10 mL, 10 ppm GA-AgNP suspension) remain throughout the trunk (81.0% on average), with a considerable amount in the roots (11.7% on average), some in branches (4.4% on average), and a limited amount in leaves (2.9% on average). Furthermore, NP concentrations during injection and tree incubation time postinjection are found to impact the distribution of Ag in tree. We also present evidence for a transport pathway that allows NPs to move from the xylem to the phloem, which disperses the NPs throughout the plant architecture, including to the roots.


Assuntos
Citrus/química , Nanopartículas Metálicas/química , Prata/metabolismo , Citrus/metabolismo , Prata/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa