Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 144: 155552, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000478

RESUMO

The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-ß) and type II interferon (IFN-É£) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1. We investigated whether the STAT1 NTD-mediated dimerization affected the IFN-induced tyrosine phosphorylation of STAT1, its nuclear translocation, STAT1-dependent gene expression, and IFN-dependent antiviral defense. We reconstituted human STAT1-negative and STAT2-negative fibrosarcoma cells with STAT1, NTD-mutated STAT1 (STAT1AA), STAT1 with a mutated DNA-binding domain (DBD), or STAT2. We treated these cells with IFN-α and IFN-É£ to assess differences between IFN-α-induced STAT1 homo- and heterodimers and IFN-É£-induced STAT1 homodimers. Our data demonstrate that IFNs induce the phosphorylation of STAT1 and STAT1AA at Y701 and their nuclear accumulation. We further reveal that STAT1AA can be phosphorylated in response to IFN-α in the absence of STAT2 and that IFN-É£-induced STAT1AA can activate gene expression directly. However, STAT1AA largely fails to bind STAT2 and to activate IFN-α-induced expression of endogenous antiviral STAT1/STAT2 target proteins. Congruent herewith, both an intact STAT1 NTD and STAT2 are indispensable to establish an antiviral state with IFN-α. These data provide new insights into the biological importance of the STAT1 NTD.


Assuntos
Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Antivirais/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Transporte Proteico/fisiologia , Fator de Transcrição STAT2/metabolismo
2.
Cell Signal ; 26(8): 1698-706, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24721162

RESUMO

Acetylation-dependent inactivation of STAT1 can be mimicked by the exchange of its lysine residues K410 and K413 to glutamine residues. STAT3 harbors non-acetylatable arginine moieties at the corresponding sites R414 and R417. It is unclear whether the mutation of these sites to glutamine residues antagonizes STAT3 activation. Here, we show that an arginine-glutamine-exchange at the STAT3 moieties R414 and R417 (R414Q and R417Q) reduces cytokine-dependent tyrosine phosphorylation of STAT3. This inhibitory effect can be partially rescued by phosphatase inhibition. In addition, the R414Q and R417Q mutations enhance the nuclear accumulation of unphosphorylated STAT3. STAT3 R414Q and STAT3 R417Q show a reduced response to cytokine stimulation emanating from the plasma membrane. Moreover, these STAT3 mutants have no direct inhibitory effect on the cytokine-induced activation of STAT1/STAT3-mediated gene expression. Since the mutations R414Q and R417Q reside within the STAT3 DNA binding domain (DBD), the STAT3 R414Q and R417Q mutants also lack intrinsic activity as transcription factors. Furthermore, in contrast to wild-type STAT3 they cannot compensate for a loss of STAT1 and they cannot promote STAT1/STAT3-dependent transcriptional activation. We further analyzed a STAT3 arginine-lysine-exchange mutant (R414K/R417K). This molecule mimics corresponding lysine residues found within the DBD of STAT1. Compared to wild-type STAT3, the STAT3 R414K/R417K mutant shows attenuated tyrosine phosphorylation and it is a less active transcription factor. In addition, STAT3 R414K/R417K is not activated by deacetylase inhibition. On the other hand, C-terminal acetylation of STAT3 is intact in STAT3 R414K/R417K. Our results suggest that the exchange of amino acid residues within the DBDs of STAT1/STAT3 affects their phosphorylation as well as their intracellular shuttling.


Assuntos
Arginina/metabolismo , DNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Acetilação , Substituição de Aminoácidos , Arginina/química , Linhagem Celular Tumoral , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Interferon-alfa/farmacologia , Interleucina-6/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/genética , Transdução de Sinais , Ativação Transcricional/efeitos dos fármacos
3.
Oncotarget ; 5(10): 3184-96, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24833526

RESUMO

The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , TYK2 Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Transdução de Sinais/fisiologia , Análise Serial de Tecidos , Transfecção
4.
Methods Mol Biol ; 967: 167-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23296729

RESUMO

Acetylation of signal transducer and activator of transcription (STAT) proteins has been recognized as a significant mechanism for the regulation of their cellular functions. Site-specific antibodies are available only for a minority of STATs. The detection of acetylated STATs by immunoprecipitation (IP) followed by western blot (WB) will be described in the following chapter. Defined conditions for cell lysis and IP will be elucidated on the basis of STAT1 acetylation.


Assuntos
Western Blotting/métodos , Imunoprecipitação/métodos , Fatores de Transcrição STAT/isolamento & purificação , Fatores de Transcrição STAT/metabolismo , Acetilação , Animais , Extratos Celulares , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Lisina/metabolismo , Camundongos , Fatores de Transcrição STAT/química , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/isolamento & purificação , Fator de Transcrição STAT1/metabolismo
5.
JAKSTAT ; 2(4): e26102, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24416653

RESUMO

The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders.

6.
Cell Signal ; 25(4): 989-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333460

RESUMO

Interferon-α (IFNα) has enormous potential for anti-proliferative and anti-viral treatments. However, clinical success is still hampered due to its limited bioavailability and thus, lack of sustained modulation of disease-relevant protective programs. Consequently, we here examined whether IFNα immobilized on nanoscale ferromagnetic R-Chitosan carriers is capable of inducing rapid and sustained activation of STAT1 signaling. We report the spontaneous formation of a stable nanoparticle-IFNα protein corona, which was exploited to generate IFNα-loaded spheres, obviating the need to specifically couple the cytokine to the nanoparticles (NPs). Notably, comprehensive experimental approaches ensure that formation of the IFNα NP-corona does not affect the biological activity of the cytokine, as STAT1 signaling was efficiently activated. Employing human prostate cancer and melanoma cell models, we found that the intensity and duration of STAT1 phosphorylation as well as the downstream activation of pathobiologically relevant genes were dose and particle dependent. In comparison with free IFNα, IFNα-loaded spheres resulted in a more sustained biologically relevant STAT1 activation, demonstrated also by conferring innate cellular immunity against vesicular stomatitis virus (VSV) infection. For one, our study demonstrates the advantages of biodegradable IFNα-coated R-Chitosan NPs for controlled cytokine release, and thereby improved therapy. Second, we reveal that the permanent presence of IFNα and not just the initial STAT1 phosphorylation ensures sustained IFNα-dependent signaling.


Assuntos
Antivirais/farmacologia , Interferon-alfa/farmacologia , Nanopartículas de Magnetita/química , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata/efeitos dos fármacos , Interferon-alfa/química , Janus Quinases/metabolismo , Fosforilação , Estomatite Vesicular/imunologia , Estomatite Vesicular/metabolismo , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos
7.
Cytokine Growth Factor Rev ; 23(6): 293-305, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22795479

RESUMO

A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.


Assuntos
Fatores de Transcrição STAT/metabolismo , Acetilação , Animais , Humanos , Transdução de Sinais
8.
Oncotarget ; 3(1): 31-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22289787

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family protein BIM, independent of wild-type p53 signaling and in the absence of increased expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from VPA/HU. Also, significantly elevated BIM levels (p less than 0.01) were detectable in the apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), underlining BIM's clinical relevance. Importantly, VPA/HU treatment additionally reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft mouse model, VPA/HU efficiently blocked tumor growth (P less than 0.001) correlating with BIM induction and EGFR downregulation. We provide a molecular rationale for the potent anti-cancer activities of this drug combination. Our data suggest its exploitation as a potential strategy for the treatment of HNSCC and other tumor entities characterized by therapy resistance linked to dysregulated EGFR activation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Genes erbB-1/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Proteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Signal ; 24(7): 1453-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22425562

RESUMO

Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation.


Assuntos
Acetilação , Proteínas de Ligação a DNA/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Interferon gama/metabolismo , Fosforilação , Fator de Transcrição STAT1/metabolismo , Acetilação/efeitos dos fármacos , Células da Medula Óssea , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células Dendríticas , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunidade Inata , Interferon-alfa/metabolismo , Interferon gama/imunologia , Fosforilação/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa