Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 35(Suppl 1): S127-S135, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666596

RESUMO

ABSTRACT: Suchomel, TJ, Giordanelli, MD, Geiser, CF, and Kipp, K. Comparison of joint work during load absorption between weightlifting derivatives. J Strength Cond Res 35(2S): S127-S135, 2021-This study examined the lower-extremity joint-level load absorption characteristics of the hang power clean (HPC) and jump shrug (JS). Eleven Division I male lacrosse players were fitted with 3-dimensional reflective markers and performed 3 repetitions each of the HPC and JS at 30, 50, and 70% of their 1 repetition maximum (1RM) HPC while standing on force plates. Load absorption joint work and duration at the hip, knee, and ankle joints were compared using 3-way repeated-measures mixed analyses of variance. Cohen's d effect sizes were used to provide a measure of practical significance. The JS was characterized by greater load absorption joint work compared with the HPC performed at the hip (p < 0.001, d = 0.84), knee (p < 0.001, d = 1.85), and ankle joints (p < 0.001, d = 1.49). In addition, greater joint work was performed during the JS compared with the HPC performed at 30% (p < 0.001, d = 0.89), 50% (p < 0.001, d = 0.74), and 70% 1RM HPC (p < 0.001, d = 0.66). The JS had a longer loading duration compared with the HPC at the hip (p < 0.001, d = 0.94), knee (p = 0.001, d = 0.89), and ankle joints (p < 0.001, d = 0.99). In addition, the JS had a longer loading duration compared with the HPC performed at 30% (p < 0.001, d = 0.83), 50% (p < 0.001, d = 0.79), and 70% 1RM HPC (p < 0.001, d = 0.85). The JS required greater hip, knee, and ankle joint work on landing compared with the load absorption phase of the HPC, regardless of load. The HPC and JS possess unique load absorption characteristics; however, both exercises should be implemented based on the goals of each training phase.


Assuntos
Força Muscular , Levantamento de Peso , Articulação do Tornozelo , Fenômenos Biomecânicos , Exercício Físico , Articulação do Quadril , Humanos , Articulação do Joelho , Masculino
2.
J Strength Cond Res ; 32(2): 466-474, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27669182

RESUMO

Kipp, K, Malloy, PJ, Smith, J, Giordanelli, MD, Kiely, MT, Geiser, CF, and Suchomel, TJ. Mechanical demands of the hang power clean and jump shrug: a joint-level perspective. J Strength Cond Res 32(2): 466-474, 2018-The purpose of this study was to investigate the joint- and load-dependent changes in the mechanical demands of the lower extremity joints during the hang power clean (HPC) and the jump shrug (JS). Fifteen male lacrosse players were recruited from a National Collegiate Athletic Association DI team, and completed 3 sets of the HPC and JS at 30, 50, and 70% of their HPC 1 repetition maximum (1RM HPC) in a counterbalanced and randomized order. Motion analysis and force plate technology were used to calculate the positive work, propulsive phase duration, and peak concentric power at the hip, knee, and ankle joints. Separate 3-way analysis of variances were used to determine the interaction and main effects of joint, load, and lift type on the 3 dependent variables. The results indicated that the mechanics during the HPC and JS exhibit joint-, load-, and lift-dependent behavior. When averaged across joints, the positive work during both lifts increased progressively with external load, but was greater during the JS at 30 and 50% of 1RM HPC than during the HPC. The JS was also characterized by greater hip and knee work when averaged across loads. The joint-averaged propulsive phase duration was lower at 30% than at 50 and 70% of 1RM HPC for both lifts. Furthermore, the load-averaged propulsive phase duration was greater for the hip than the knee and ankle joint. The joint-averaged peak concentric power was the greatest at 70% of 1RM for the HPC and at 30%-50% of 1RM for the JS. In addition, the joint-averaged peak concentric power of the JS was greater than that of the HPC. Furthermore, the load-averaged peak knee and ankle concentric joint powers were greater during the execution of the JS than the HPC. However, the load-averaged power of all joints differed only during the HPC, but was similar between the hip and knee joints for the JS. Collectively, these results indicate that compared with the HPC the JS is characterized by greater hip and knee positive joint work, and greater knee and ankle peak concentric joint power, especially if performed at 30 and 50% of 1RM HPC. This study provides important novel information about the mechanical demands of 2 commonly used exercises and should be considered in the design of resistance training programs that aim to improve the explosiveness of the lower extremity joints.


Assuntos
Extremidade Inferior/fisiologia , Treinamento Resistido/métodos , Articulação do Tornozelo/fisiologia , Atletas , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Movimento (Física) , Força Muscular/fisiologia , Esportes com Raquete , Adulto Jovem
3.
Int J Sports Physiol Perform ; 13(1): 44-49, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28422586

RESUMO

The Reactive Strength Index (RSI) is often used to quantify drop-jump (DJ) performance; however, not much is known about its biomechanical determinants. The purpose of this study was to investigate the correlations between the RSI and several biomechanical variables calculated from DJ performed with different initial drop heights. Twelve male NCAA Division I basketball players performed DJs from drop heights of 30, 45, and 60 cm. Force plates were used to calculate DJ performance parameters (ie, DJ height, contact time, and RSI) and DJ biomechanical variables (ie, vertical stiffness and eccentric/concentric energetics). Regression analyses were used to assess the correlations between variables at each drop height, and ANOVAs were used to assess the differences of all variables across drop heights. Follow-up analyses used 2 neural networks to determine if DJ performance and biomechanical data could accurately classify DJ trials by drop-height condition. Vertical-stiffness values were significantly correlated with RSI at each height but did not change across drop heights. Surprisingly, the RSI and other DJ parameters also did not vary across drop height, which resulted in the inability of these variables to accurately classify DJ trials. Given that vertical stiffness did not change across drop height and was highly correlated with RSI at each height, the RSI appears to reflect biomechanical behavior related to vertical stiffness during DJ. However, the inability of the RSI to accurately classify drop-height condition questions the use of RSI profiles established from DJs from different heights.


Assuntos
Basquetebol/fisiologia , Força Muscular/fisiologia , Fenômenos Biomecânicos , Humanos , Masculino , Destreza Motora/fisiologia , Redes Neurais de Computação , Exercício Pliométrico , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa