Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Med ; 29(1): 45, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013473

RESUMO

BACKGROUND: High-resolution respirometry (HRR) of human biopsies can provide useful metabolic, diagnostic, and mechanistic insights for clinical research and comparative medical studies. Fresh tissues analysis offers the potential best condition, the drawback being the need to use them shortly after dissection for mitochondrial respiratory experiments. The development of effective long-term storage protocols for biopsies that allow the assessment of key Electron Transport System (ETS) parameters at later stages is thus a major need. METHODS: We optimised a cryopreservation protocol that preserves mitochondrial membranes intactness, otherwise affected by direct tissue freezing. The protocol is based on a gradual freezing step from on-ice to liquid nitrogen and - 80 °C storage using a specific DMSO-based buffer. RESULTS: Placenta is a suitable tissue to design and test the effectiveness of long-term storage protocols being metabolically active foetal tissue with mitochondrial dysfunctions contributing to placental disease and gestational disorders. Here we designed and tested the effectiveness of the cryopreservation protocol using human placenta biopsies; we measured the ETS activity by HRR of placenta specimens comparing fresh, cryopreserved, and snap frozen conditions. CONCLUSIONS: By this protocol, Oxygen Consumption Rate (OCR) measurements of fresh and cryopreserved placental specimens are comparable whereas snap frozen procedure impairs mitochondrial activity.


Assuntos
Criopreservação , Placenta , Feminino , Humanos , Gravidez , Placenta/metabolismo , Criopreservação/métodos , Mitocôndrias/metabolismo , Biópsia , Congelamento
2.
Cell Mol Life Sci ; 78(4): 1615-1636, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32749504

RESUMO

Dystrophin (dys) mutations predispose Duchenne muscular disease (DMD) patients to brain and retinal complications. Although different dys variants, including long dys products, are expressed in the retina, their function is largely unknown. We investigated the putative role of full-length dystrophin in the homeostasis of neuro-retina and its impact on synapsis stabilization and cell fate. Retinas of mdx mice, the most used DMD model which does not express the 427-KDa dys protein (Dp427), showed overlapped cell death and impaired autophagy. Apoptotic neurons in the outer plexiform/inner nuclear layer and the ganglion cell layer had an impaired autophagy with accumulated autophagosomes. The autophagy dysfunction localized at photoreceptor axonal terminals and bipolar, amacrine, and ganglion cells. The absence of Dp427 does not cause a severe phenotype but alters the neuronal architecture, compromising mainly the pre-synaptic photoreceptor terminals and their post-synaptic sites. The analysis of two dystrophic mutants of the fruit fly Drosophila melanogaster, the homozygous DysE17 and DysEP3397, lacking functional large-isoforms of dystrophin-like protein, revealed rhabdomere degeneration. Structural damages were evident in the internal network of retina/lamina where photoreceptors make the first synapse. Both accumulated autophagosomes and apoptotic features were detected and the visual system was functionally impaired. The reactivation of the autophagosome turnover by rapamycin prevented neuronal cell death and structural changes of mutant flies and, of interest, sustained autophagy ameliorated their response to light. Overall, these findings indicate that functional full-length dystrophin is required for synapsis stabilization and neuronal survival of the retina, allowing also proper autophagy as a prerequisite for physiological cell fate and visual properties.


Assuntos
Distrofina/genética , Doenças Retinianas/genética , Neurônios Retinianos/metabolismo , Animais , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Isoformas de Proteínas/genética , Retina/metabolismo , Retina/patologia , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Neurônios Retinianos/patologia , Sinapses/genética
3.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955872

RESUMO

Duchenne muscular dystrophy (DMD) is a rare genetic disease leading to progressive muscle wasting, respiratory failure, and cardiomyopathy. Although muscle fibrosis represents a DMD hallmark, the organisation of the extracellular matrix and the molecular changes in its turnover are still not fully understood. To define the architectural changes over time in muscle fibrosis, we used an mdx mouse model of DMD and analysed collagen and glycosaminoglycans/proteoglycans content in skeletal muscle sections at different time points during disease progression and in comparison with age-matched controls. Collagen significantly increased particularly in the diaphragm, quadriceps, and gastrocnemius in adult mdx, with fibrosis significantly correlating with muscle degeneration. We also analysed collagen turnover pathways underlying fibrosis development in cultured primary quadriceps-derived fibroblasts. Collagen secretion and matrix metalloproteinases (MMPs) remained unaffected in both young and adult mdx compared to wt fibroblasts, whereas collagen cross-linking and tissue inhibitors of MMP (TIMP) expression significantly increased. We conclude that, in the DMD model we used, fibrosis mostly affects diaphragm and quadriceps with a higher collagen cross-linking and inhibition of MMPs that contribute differently to progressive collagen accumulation during fibrotic remodelling. This study offers a comprehensive histological and molecular characterisation of DMD-associated muscle fibrosis; it may thus provide new targets for tailored therapeutic interventions.


Assuntos
Distrofia Muscular de Duchenne , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
4.
Pharmacol Res ; 170: 105751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197911

RESUMO

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Assuntos
Carbamatos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Biogênese de Organelas , Acetilação , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas
5.
Proc Natl Acad Sci U S A ; 111(47): E5023-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385579

RESUMO

Long noncoding RNAs (lncRNAs) interact with protein factors to regulate different layers of gene expression transcriptionally or posttranscriptionally. Here we report on the functional consequences of the unanticipated interaction of the RNA binding protein K homology-type splicing regulatory protein (KSRP) with the H19 lncRNA (H19). KSRP directly binds to H19 in the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells, and this interaction favors KSRP-mediated destabilization of labile transcripts such as myogenin. AKT activation induces KSRP dismissal from H19 and, as a consequence, myogenin mRNA is stabilized while KSRP is repurposed to promote maturation of myogenic microRNAs, thus favoring myogenic differentiation. Our data indicate that H19 operates as a molecular scaffold that facilitates effective association of KSRP with myogenin and other labile transcripts, and we propose that H19 works with KSRP to optimize an AKT-regulated posttranscriptional switch that controls myogenic differentiation.


Assuntos
RNA Longo não Codificante/fisiologia , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Humanos , Ligação Proteica , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
6.
Biochim Biophys Acta ; 1829(5): 469-79, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23462617

RESUMO

Understanding the molecular mechanisms that control the balance between multipotency and differentiation is of great importance to elucidate the genesis of both developmental disorders and cell transformation events. To investigate the role of the RNA binding protein KSRP in controlling neural differentiation, we used the P19 embryonal carcinoma cell line that is able to differentiate into neuron-like cells under appropriate culture conditions. We have recently reported that KSRP controls the differentiative fate of multipotent mesenchymal cells owing to its ability to promote decay of unstable transcripts and to favor maturation of selected micro-RNAs (miRNAs) from precursors. Here we report that KSRP silencing in P19 cells favors neural differentiation increasing the expression of neuronal markers. Further, the expression of two master transcriptional regulators of neurogenesis, ASCL1 and JMJD3, was enhanced while the maturation of miR-200 family members from precursors was impaired in KSRP knockdown cells. These molecular changes can contribute to the reshaping of P19 cells transcriptome that follows KSRP silencing. Our data suggests that KSRP function is required to maintain P19 cells in a multipotent undifferentiated state and that its inactivation can orient cells towards neural differentiation.


Assuntos
Inativação Gênica , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Teratocarcinoma , Transativadores/metabolismo , Transcrição Gênica , Transcriptoma
7.
Antioxidants (Basel) ; 13(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061926

RESUMO

Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental mitochondrial features and oxidative environment of 46 pregnancies in relation to pre-pregnancy BMI. Seventeen Caucasian normal-weight (NW) and twenty-nine women who were obese (OB) were enrolled. The protein expression of mitochondrial CypD and electron transfer chain complexes (C) I-V were measured, as well as ATP production and oxygen consumption rates (OCRs). The protein levels of the pro/anti-oxidant enzymes TXNIP, SOD2, and PON2 were also analyzed. Despite no differences in CypD expression, OCRs were significantly lower in OB vs. NW women. Accordingly, ATP synthase (CV) levels and ATP content were decreased in OB women, positively correlating with placental efficiency, suggesting a link between ATP deficiency and placental dysfunction. SOD2 expression negatively correlated with maternal BMI, indicating a possible impairment of antioxidant defenses with increasing BMI. These changes were worsened in 10 OB women presenting with gestational diabetes mellitus. Overall, these results suggest alterations of placental bioenergetics in pregnancies of women with obesity, possibly leading to placental dysfunction and altered fetal development and programming.

8.
Biomed Pharmacother ; 166: 115298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597318

RESUMO

The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes.


Assuntos
Drosophila melanogaster , Hiperglicemia , Animais , Drosophila , Dieta , Retina , Glutationa Transferase , Glucose
9.
Cell Death Discov ; 8(1): 459, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36396939

RESUMO

Skeletal muscle growth and regeneration involves the activity of resident adult stem cells, namely satellite cells (SC). Despite numerous mechanisms have been described, different signals are emerging as relevant in SC homeostasis. Here we demonstrated that the Receptor for Activated C-Kinase 1 (RACK1) is important in SC function. RACK1 was expressed transiently in the skeletal muscle of post-natal mice, being abundant in the early phase of muscle growth and almost disappearing in adult mature fibers. The presence of RACK1 in interstitial SC was also detected. After acute injury in muscle of both mouse and the fruit fly Drosophila melanogaster (used as alternative in vivo model) we found that RACK1 accumulated in regenerating fibers while it declined with the progression of repair process. To note, RACK1 also localized in the active SC that populate recovering tissue. The dynamics of RACK1 levels in isolated adult SC of mice, i.e., progressively high during differentiation and low compared to proliferating conditions, and RACK1 silencing indicated that RACK1 promotes both the formation of myotubes and the accretion of nascent myotubes. In Drosophila with depleted RACK1 in all muscle cells or, specifically, in SC lineage we observed a delayed recovery of skeletal muscle after physical damage as well as the low presence of active SC in the wound area. Our results also suggest the coupling of RACK1 to muscle unfolded protein response during SC activation. Collectively, we provided the first evidence that transient levels of the evolutionarily conserved factor RACK1 are critical for adult SC activation and proper skeletal muscle regeneration, favoring the efficient progression of SC from a committed to a fully differentiated state.

10.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830947

RESUMO

Melanoma originates from the malignant transformation of melanocytes and is one of the most aggressive forms of cancer. The recent approval of several drugs has increased the chance of survival although a significant subset of patients with metastatic melanoma do not show a long-lasting response to these treatments. The complex cross-talk between oxidative stress and the catabolic process autophagy seems to play a central role in all aspects of melanoma pathophysiology, from initiation to progression and metastasis, including drug resistance. However, determining the fine role of autophagy in cancer death and in response to redox disruption is still a fundamental challenge in order to advance both basic and translational aspects of this field. In order to summarize the interactions among reactive oxygen and nitrogen species, autophagy machinery and proliferation/growth/death/apoptosis/survival, we provide here a narrative review of the preclinical evidence for drugs/treatments that modulate oxidative stress and autophagy in melanoma cells. The significance and the potential for pharmacological targeting (also through multiple and combination approaches) of these two different events, which can contribute independently or simultaneously to the fate of melanoma, may help to define new processes and their interconnections underlying skin cancer biology and unravel new reliable approaches.

11.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831250

RESUMO

Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells' differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.


Assuntos
Macrófagos/metabolismo , Macrófagos/patologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Diferenciação Celular , Polaridade Celular , Proliferação de Células , Ativação Enzimática , Inflamação/patologia , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Fenótipo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/deficiência
12.
Cell Death Differ ; 28(1): 123-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32661288

RESUMO

SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Doenças Musculares/metabolismo , Selenoproteínas/metabolismo , Adolescente , Adulto , Animais , Cálcio/metabolismo , Criança , Retículo Endoplasmático/genética , Metabolismo Energético , Feminino , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Doenças Musculares/genética , Doenças Musculares/patologia , Oxirredução , Selenoproteínas/genética , Adulto Jovem
13.
Cells ; 9(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244541

RESUMO

Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells.


Assuntos
Regulação para Baixo , Melanoma Experimental/enzimologia , Melanoma Experimental/metabolismo , Dinâmica Mitocondrial , Esfingomielina Fosfodiesterase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/metabolismo , Melanoma Experimental/ultraestrutura , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Biogênese de Organelas , Oxirredução
14.
Cell Death Differ ; 27(8): 2383-2401, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32042098

RESUMO

Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse. This altered desmin architecture impairs mechanotransduction and compromises mitochondrial network stability priming mitochondria transport through microtubule-dependent trafficking with a mechanism that involves the Drp1-dependent regulation of kinesin-1 complex.


Assuntos
Desmina/metabolismo , Dinaminas/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ativação Enzimática , Humanos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Transporte Proteico , Quinazolinonas/metabolismo , Succinato Desidrogenase/metabolismo
15.
Front Cell Neurosci ; 13: 120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019453

RESUMO

Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer's, Parkinson's and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.

16.
Autophagy ; 15(1): 58-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081710

RESUMO

Macroautophagy/autophagy is emerging as an important process in adult muscle stem cells functions: it regulates metabolic reprogramming during activation from a quiescent state, maintains stemness and prevents senescence. We now show that autophagy is specifically required for neonatal myogenesis and muscle development. Specific deletion of Atg7 in PAX7+ (paired box 7) precursors led in mice to a dwarf phenotype, with an effect restricted to the neonatal phase of muscle development. Atg7 knockdown suppressed neonatal satellite cell (nSC) proliferation and differentiation, downregulating the GH-IGF1 functions. When we disrupted autophagy, NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) accumulated in muscle and nSCs and negatively modulated DDIT3/CHOP (DNA-damage inducible transcript 3) expression. Lower levels of DDIT3 were responsible for reduced GHR expression leading to impaired local production of IGF1. Our results conclusively identify a novel autophagy-dependent pathway that regulates nSC behavior and indicate that autophagy is required for skeletal muscle development in the neonatal phase. Abbreviations: AKT/protein kinase B: Thymoma viral proto-oncogene; ASCs: adult stem cells; ATF4: activating transcription factor 4; ATG7: autophagy related 7; BAT: brown adipose tissue; BMP: bone morphogenetic protein; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; CSA: cross sectional area; CTNNB1: catenin (cadherin associated protein), beta 1; DDIT3: DNA-damage inducible transcript 3; DM: differentiation medium; E: embryonic stage; EIF2AK3/PERK; EIF4EBP1: eukaryotic translation initiation factor 2 alpha kinase 3; eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; FGF21: fibroblast growth factor 21; GH: growth hormone; GHR: growth hormone receptor; HSCs: hematopoietic stem cells; IGF1: insulin-like growth factor 1; ITGAM: integrin alpha M; KEAP1: kelch-like ECH-associated protein 1; LY6A/Sca-1; MAP1LC3: lymphocyte antigen 6 complex, locus A; microtubule-associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; miRNAs: microRNAs; MSCs: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; mtUPR: mitochondrial unfolded protein response; MYF5: myogenic factor 5; MYH: myosin, heavy polypeptide; MYOD1: myogenic differentiation 1; MYOG: myogenin; NFE2L2: nuclear factor, erythroid derived 2, like 2; nSC: neonatal satellite cells; NSCs: neuronal stem cells; P: postnatal day; PAX7: paired box 7; PECAM1: platelet/endothelial cell adhesion molecule 1; PPARG: peroxisome proliferator activated receptor gamma; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SCs: adult satellite cells; SQSTM1: sequestosome 1; STAT5: signal transducer and activator of transcription 5; TGFB1: transforming growth factor beta 1; WAT: white adipose tissue; WT: wild type.


Assuntos
Autofagia/genética , Fator de Crescimento Insulin-Like I/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Fator 1 Relacionado a NF-E2/genética , Fator de Transcrição CHOP/genética , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/genética , Fator de Transcrição CHOP/metabolismo
17.
Cancers (Basel) ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505859

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A-C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.

18.
Front Chem ; 7: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316972

RESUMO

We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds.

19.
Sci Adv ; 5(4): eaav1472, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001581

RESUMO

Obesity and its associated metabolic abnormalities have become a global emergency with considerable morbidity and mortality. Epidemiologic and animal model data suggest an epigenetic contribution to obesity. Nevertheless, the cellular and molecular mechanisms through which epigenetics contributes to the development of obesity remain to be elucidated. Suv420h1 and Suv420h2 are histone methyltransferases responsible for chromatin compaction and gene repression. Through in vivo, ex vivo, and in vitro studies, we found that Suv420h1 and Suv420h2 respond to environmental stimuli and regulate metabolism by down-regulating peroxisome proliferator-activated receptor gamma (PPAR-γ), a master transcriptional regulator of lipid storage and glucose metabolism. Accordingly, mice lacking Suv420h proteins activate PPAR-γ target genes in brown adipose tissue to increase mitochondria respiration, improve glucose tolerance, and reduce adipose tissue to fight obesity. We conclude that Suv420h proteins are key epigenetic regulators of PPAR-γ and the pathways controlling metabolism and weight balance in response to environmental stimuli.


Assuntos
Metabolismo Energético , Histona-Lisina N-Metiltransferase/metabolismo , PPAR gama/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Cromatina/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/patologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
Cell Death Dis ; 10(1): 10, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30584259

RESUMO

Autophagy occurs at a basal level in all eukaryotic cells and may support cell survival or activate death pathways. Due to its pathophysiologic significance, the autophagic machinery is a promising target for the development of multiple approaches for anti-neoplastic agents. We have recently described the cytotoxic and pro-apoptotic mechanisms, targeting the tumour suppressor p53, of climacostol, a natural product of the ciliated protozoan Climacostomum virens. We report here on how climacostol regulates autophagy and the involvement of p53-dependent mechanisms. Using both in vitro and in vivo techniques, we show that climacostol potently and selectively impairs autophagy in multiple tumour cells that are committed to die by apoptosis. In particular, in B16-F10 mouse melanomas climacostol exerts a marked and sustained accumulation of autophagosomes as the result of dysfunctional autophagic degradation. We also provide mechanistic insights showing that climacostol affects autophagosome turnover via p53-AMPK axis, although the mTOR pathway unrelated to p53 levels plays a role. In particular, climacostol activated p53 inducing the upregulation of p53 protein levels in the nuclei through effects on p53 stability at translational level, as for instance the phosphorylation at Ser15 site. Noteworthy, AMPKα activation was the major responsible of climacostol-induced autophagy disruption in the absence of a key role regulating cell death, thus indicating that climacostol effects on autophagy and apoptosis are two separate events, which may act independently on life/death decisions of the cell. Since the activation of p53 system is at the molecular crossroad regulating both the anti-autophagic action of climacostol and its role in the apoptosis induction, it might be important to explore the dual targeting of autophagy and apoptosis with agents acting on p53 for the selective killing of tumours. These findings also suggest the efficacy of ciliate bioactive molecules to identify novel lead compounds in drug discovery and development.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Resorcinóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa