Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6776-6783, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37343942

RESUMO

Spin waves represent the collective excitations of the magnetization field within a magnetic material, providing dispersion curves that can be manipulated by material design and external stimuli. Bulk and surface spin waves can be excited in a thin film with positive or negative group velocities and, by incorporating a symmetry-breaking mechanism, magnetochiral features arise. Here we study the band diagram of a chiral magnonic crystal consisting of a ferromagnetic film incorporating a periodic Dzyaloshinskii-Moriya coupling via interfacial contact with an array of heavy-metal nanowires. We provide experimental evidence for a strong asymmetry of the spin wave amplitude induced by the modulated interfacial Dzyaloshinskii-Moriya interaction, which generates a nonreciprocal propagation. Moreover, we observe the formation of flat spin-wave bands at low frequencies in the band diagram. Calculations reveal that depending on the perpendicular anisotropy, the spin-wave localization associated with the flat modes occurs in the zones with or without Dzyaloshinskii-Moriya interaction.

2.
Nat Commun ; 15(1): 3057, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594233

RESUMO

Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa