Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prog Brain Res ; 143: 163-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14653161

RESUMO

After a spinalization at the most caudal thoracic spinal segment, the cat can recover locomotion of the hindlimbs when they are placed on a moving treadmill. This chapter summarizes some of the determinants of such a dramatic recovery of motor function. Fundamental to this recovery is undoubtedly the genetically based spinal locomotor generator, which provides an essential rhythmicity to spinal motoneurons and hence the musculature. Other factors are also important, however. Sensory feedback is essential for the correct expression of spinal locomotion because spinal cats, devoid of cutaneous feedback from the hindfeet, are incapable of plantar foot placement. The neurochemical environment also adapts to spinalization, i.e., the loss of all modulation by descending monoaminergic pathways. Post-transection spinal rhythmicity then becomes more dependent on glutamatergic mechanisms. Finally, we argue that the mid-lumbar spinal segments evolve to play a crucial role in the elaboration of spinal locomotion as their inactivation abolishes spinal locomotion. In summary, the above findings suggest that the recovery of spinal locomotion is determined by a number of factors, each of which must now be more fully understood in the ever-continuing effort to improve the rehabilitation of spinal-cord-injured subjects.


Assuntos
Gatos/fisiologia , Atividade Motora , Traumatismos da Medula Espinal/fisiopatologia , Animais , Membro Posterior/fisiopatologia , Região Lombossacral , Plasticidade Neuronal , Receptores de Neurotransmissores/metabolismo , Recuperação de Função Fisiológica , Sensação , Medula Espinal/fisiopatologia , Vértebras Torácicas
2.
Prog Brain Res ; 188: 229-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21333814

RESUMO

Locomotion is a very robust motor pattern which can be optimized after different types of lesions to the central and/or peripheral nervous system. This implies that several plastic mechanisms are at play to re-express locomotion after such lesions. Here, we review some of the key observations that helped identify some of these plastic mechanisms. At the core of this plasticity is the existence of a spinal central pattern generator (CPG) which is responsible for hindlimb locomotion as observed after a complete spinal cord section. However, normally, the CPG pattern is adapted by sensory inputs to take the environment into account and by supraspinal inputs in the context of goal-directed locomotion. We therefore also review some of the sensory and supraspinal mechanisms involved in the recovery of locomotion after partial spinal injury. We particularly stress a recent development using a dual spinal lesion paradigm in which a first partial spinal lesion is made which is then followed, some weeks later, by a complete spinalization. The results show that the spinal cord below the spinalization has been changed by the initial partial lesion suggesting that, in the recovery of locomotion after partial spinal lesion, plastic mechanisms within the spinal cord itself are very important.


Assuntos
Locomoção/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/patologia , Medula Espinal/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Neurotransmissores/metabolismo , Medula Espinal/anatomia & histologia
3.
J Neurophysiol ; 90(2): 1027-45, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904502

RESUMO

In a previous article, we have shown that, in cats, intrathecal injections of N-methyl-D-aspartate (NMDA) in the first few days after spinalization at T13 do not induce locomotion as in many other spinal preparations. This is in contrast to alpha-2 noradrenergic receptor stimulation, which can trigger locomotion at this early stage. However, it is known that spinal cats do recover spontaneous locomotion in the absence of descending noradrenergic pathways and that the spinal pattern generator must then depend on other neurotransmitters still present in the cord such as excitatory amino acids. In the present paper, therefore we look at the effects of intrathecal NMDA, a glutamatergic agonist, and 2-amino-5-phosphonovaleric acid (AP-5), an NMDA receptor blocker, in both intact and late spinal cats. Low doses of NMDA had no major effect on the locomotor pattern in both intact and late spinal cats. Larger doses of NMDA in the chronic spinal cat initially produced an increase in the general excitability followed by more regular locomotion. AP-5 in intact cats caused a decrease in the amplitude of the flexion reflex and induced a bilateral foot drag as well as some decrease in weight support but it did not prevent locomotion. However, in late spinal cats, the same dose of AP-5 blocked locomotion completely. These results indicate that NMDA receptors may be critical for the spontaneous expression of spinal locomotion. It is proposed that the basic locomotor rhythmicity in cats is NMDA-dependent and that normally this glutamatergic mechanism is modulated by other neurotransmitters, such as 5-HT and NA.


Assuntos
2-Amino-5-fosfonovalerato/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , 2-Amino-5-fosfonovalerato/administração & dosagem , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Gatos , Estado de Descerebração , Estimulação Elétrica , Eletromiografia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Injeções Espinhais , Locomoção/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reflexo/fisiologia , Ioimbina/farmacologia
4.
J Neurophysiol ; 88(6): 3032-45, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466428

RESUMO

Excitatory amino acids (EAA) have been reported to induce fictive locomotion in different in vitro and in vivo preparations in a variety of species through their actions on both N-methyl-D-aspartate (NMDA), and non-NMDA receptors. NMDA-induced intrinsic membrane properties such as intrinsic motoneuronal membrane oscillations and plateau potentials have been suggested to play a role in the generation of locomotion. There is, however, no information on the ability of NMDA in triggering spinal locomotion in awake behaving animals. Because most of the previous work on the induction of locomotion has concentrated on monoaminergic drugs, mainly noradrenergic drugs, the aim of this study is to examine the potential of NMDA in initiating locomotion in chronic spinal cats within the first week after spinalization. Five cats chronically implanted with an intrathecal cannula and electromyographic (EMG) electrodes were used. EMG activity synchronized to video images of the hindlimbs were recorded. The results show that during the early posttransection period (within the 1st week postspinalization), NMDA did not trigger robust locomotion as did noradrenergic drugs. The predominant effects of NMDA were a general hyperexcitability reflected by fast tremor, toe fanning, and an increase in small alternating hindlimb movements with no foot placement nor weight support. During the intermediate phase posttransection (6-8 days), when the cats were able to make some rudimentary steps with foot placement, NMDA significantly enhanced the locomotor performance, which lasted for 24-72 h postinjection. NMDA was also found to increase the excitability of the cutaneous reflex transmission only in early spinal cats. One possible hypothesis for the ineffectiveness of NMDA in triggering locomotion in early spinal cats could be attributed to the widespread activation of NMDA receptors on various neuronal elements involved in the transmission of afferent pathways that in turn may interfere with the expression of locomotion. The marked effects of NMDA in intermediate-spinal cats suggest that NMDA receptors play an important role in locomotion perhaps through its role on intrinsic membrane properties of neurons in shaping and amplifying spinal neuronal transmission or by augmenting the sensory afferent inputs. The long-term effects mediated by NMDA receptors have been reported in the literature and may involve mechanisms such as induction of long-term potentiation or interactions with neuropeptides. The effects of NMDA injection in intact cats and long-term chronic spinal cats will be addressed in a forthcoming companion paper.


Assuntos
Agonistas de Aminoácidos Excitatórios/administração & dosagem , Atividade Motora/efeitos dos fármacos , N-Metilaspartato/administração & dosagem , Animais , Gatos , Estado de Descerebração/fisiopatologia , Relação Dose-Resposta a Droga , Eletromiografia , Agonistas de Aminoácidos Excitatórios/farmacologia , Injeções Espinhais , N-Metilaspartato/farmacologia , Tempo de Reação , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa