Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 122: 95-109, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39134183

RESUMO

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.


Assuntos
Medo , Hipocampo , Microglia , Plasticidade Neuronal , Sinapses , Animais , Masculino , Microglia/metabolismo , Feminino , Hipocampo/metabolismo , Camundongos , Medo/fisiologia , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Fatores Sexuais
2.
bioRxiv ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39386482

RESUMO

Childhood neglect is associated with cortical thinning, hyperactivity, and deficits in cognitive flexibility that are difficult to reverse later in life. Despite being the most prevalent form of early adversity, little is currently understood about the mechanisms responsible for these neurodevelopmental abnormalities, and no animal models have yet replicated key structural and behavioral features of childhood neglect/deprivation. To address these gaps, we have recently demonstrated that mice exposed to impoverished conditions, specifically limited bedding (LB), exhibit behavioral and structural changes that resemble those observed in adolescents who have experienced severe neglect. Here, we show that LB leads to long-term deficits in reversal learning, which can be fully reversed by briefly exposing LB pups to enrichment (toys) in their home cage from postnatal days 14 to 25. Reversal learning failed to induce normal c-fos activation in the orbitofrontal cortex (OFC) of LB mice, a deficit that was normalized by early enrichment. Additionally, LB decreased the density of parvalbumin-positive cells surrounded by perineuronal nets (PV+PNN+) and increased the ratio of glutamatergic to inhibitory synapse densities in the OFC, deficits that were also reversed by enrichment. Degradation of PNN in the OFC of adult mice impaired reversal learning, reduced c-fos activation, and increased the ratio of glutamatergic to inhibitory synapse densities in the OFC to levels comparable to those observed in LB mice. Collectively, our findings suggest that postnatal deprivation and enrichment impact the formation of PV+PNN+ cells in the OFC, a developmental process that is essential for cognitive flexibility in adulthood.

3.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715106

RESUMO

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Assuntos
Hipocampo , Memória , Camundongos Endogâmicos C57BL , Via Perfurante , Proteína Reelina , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/metabolismo , Medo , Camundongos , Estresse Psicológico
4.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405887

RESUMO

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early life adversity, with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of early life adversity, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21, in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. This finding suggests a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, these studies highlight a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of early-life adversity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa