RESUMO
Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms. Bulk bacterial activity increased after 24 h for all treatments relative to the control, while glucose and ATP uptake decreased or remained unchanged. Moreover, while the per-cell uptake rate of glucose and ATP decreased, that of Leucin significantly increased for amino acids, reflecting their importance as common metabolic currencies in the marine environment. Pseudoalteromonadaceae dominated the peptides treatment, while different Vibrionaceae strains became dominant in response to amino acids and amino sugars. Marinomonadaceae grew well on organic acids, and Alteromonadaseae on disaccharides. A comparison with a recent laboratory-based study reveals similar peptide preferences for Pseudoalteromonadaceae, while Alteromonadaceae, for example, grew well in the lab on many substrates but dominated in seawater samples only when disaccharides were added. We further demonstrate a potential correlation between the genetic capacity for degrading amino sugars and the dominance of specific clades in these treatments. These results highlight the diversity in DOM utilization among heterotrophic bacteria and complexities in the response of natural communities. IMPORTANCE: A major goal of microbial ecology is to predict the dynamics of natural communities based on the identity of the organisms, their physiological traits, and their genomes. Our results show that several clades of heterotrophic bacteria each grow in response to one or more specific classes of organic matter. For some clades, but not others, growth in a complex community is similar to that of isolated strains in laboratory monoculture. Additionally, by measuring how the entire community responds to various classes of organic matter, we show that these results are ecologically relevant, and propose that some of these resources are utilized through common uptake pathways. Tracing the path between different resources to the specific microbes that utilize them, and identifying commonalities and differences between different natural communities and between them and lab cultures, is an important step toward understanding microbial community dynamics and predicting how communities will respond to perturbations.
Assuntos
Bactérias , Processos Heterotróficos , Água do Mar , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Mar Mediterrâneo , Microbiota , Aminoácidos/metabolismo , Compostos Orgânicos/metabolismoRESUMO
Two different hypotheses have been raised as to how temperature affects resource allocation in microorganisms. The translation-compensation hypothesis (TCH) predicts that the increase in enzymatic efficiency with temperature results in fewer required ribosomes per cell and lower RNA:protein ratio. In contrast, the growth rate hypothesis (GRH) predicts that increasing the growth rate with temperature requires more ribosomes and hence a higher cellular RNA:protein. We tested these two hypotheses in laboratory cultures of Prochlorococcus and Alteromonas as well as over an annual cycle in the Eastern Mediterranean Sea. The RNA:protein of Alteromonas mostly decreased with temperature in accordance with the TCH, while that of Prochlorococcus increased with temperature, as predicted by the GRH. No support was found for either hypothesis in surface waters from the Eastern Mediterranean, whereas the fraction of phosphorus in RNA was positively correlated with per-cell bacterial production in the deep chlorophyll maximum, supporting the GRH in this niche. A considerable part of the cellular phosphorus was not allocated to RNA, DNA, phospholipids or polyphosphate, raising the question which cellular molecules contain these P reserves. While macromolecular quotas differed significantly between laboratory cultures and field samples, these were connected through a power law, suggesting common rules of resource allocation.