Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(5): 3006-3012, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28437086

RESUMO

Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy accounts for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization.

2.
Phys Rev Lett ; 115(5): 057201, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274435

RESUMO

Thermal activation tends to destroy the magnetic stability of small magnetic nanoparticles, with crucial implications for ultrahigh density recording among other applications. Here we demonstrate that low-blocking-temperature ferromagnetic (FM) Co nanoparticles (T(B)<70 K) become magnetically stable above 400 K when embedded in a high-Néel-temperature antiferromagnetic (AFM) NiO matrix. The origin of this remarkable T(B) enhancement is due to a magnetic proximity effect between a thin CoO shell (with low Néel temperature, T(N), and high anisotropy, K(AFM)) surrounding the Co nanoparticles and the NiO matrix (with high T(N) but low K(AFM)). This proximity effect yields an effective antiferromagnet with an apparent T(N) beyond that of bulk CoO, and an enhanced anisotropy compared to NiO. In turn, the Co core FM moment is stabilized against thermal fluctuations via core-shell exchange-bias coupling, leading to the observed T(B) increase. Mean-field calculations provide a semiquantitative understanding of this magnetic-proximity stabilization mechanism.

3.
Phys Rev Lett ; 108(7): 077205, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401249

RESUMO

In Co/CoO nanostructures, of dimensions l×3l, at small Co thickness (≈6,10 nm), a strong increase in the bias field and the associated coercive field are found as the nanostructure size is reduced from l=120 nm to l=30 nm. This property indicates that the characteristic length D(AF) within the antiferromagnet which governs exchange-bias effects is the nanostructure size. By contrast, at larger Co thickness (≈23 nm), the exchange-bias field does not depend on the nanostructure size, implying that D(AF) is smaller than the nanostructure size. The results are discussed in the framework of the Malozemoff model, taking into account that the coupling between CoO grains is weak. Exchange bias is dominated either by coupling within the antiferromagnetic layer (6- and 10-nm-thick Co samples) or by ferromagnetic-antiferromagnetic interfacial coupling (23-nm-thick Co sample).

4.
PLoS One ; 8(8): e70416, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936425

RESUMO

Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.


Assuntos
Imãs , Células-Tronco Mesenquimais/citologia , Análise Serial de Tecidos/métodos , Animais , Adesão Celular , Movimento Celular , Sobrevivência Celular , Meios de Cultura/química , Compostos Férricos/química , Campos Magnéticos , Nanopartículas , Ratos , Ratos Wistar , Fatores de Tempo
5.
Nat Commun ; 4: 2821, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24281726

RESUMO

The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving ß-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of ß-catenin-tyrosine-667. This leads to the release of ß-catenin into the cytoplasm and nucleus, where it triggers and maintains, respectively, the expression of zebrafish brachyury orthologue notail and of Drosophila Twist, both crucial transcription factors for early mesoderm identity. The role of the ß-catenin mechanosensitive pathway in mesoderm identity has been conserved over the large evolutionary distance separating zebrafish and Drosophila. This suggests mesoderm mechanical induction dating back to at least the last bilaterian common ancestor more than 570 million years ago, the period during which mesoderm is thought to have emerged.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Evolução Biológica , Proteínas de Drosophila/metabolismo , Mecanotransdução Celular , Mesoderma/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Animais , Sequência Conservada/fisiologia , Drosophila , Feminino , Proteínas Fetais , Masculino , Mecanotransdução Celular/fisiologia , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Peixe-Zebra
6.
Science ; 315(5810): 349-51, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17234941

RESUMO

A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.

7.
Nature ; 423(6942): 850-3, 2003 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12815426

RESUMO

Interest in magnetic nanoparticles has increased in the past few years by virtue of their potential for applications in fields such as ultrahigh-density recording and medicine. Most applications rely on the magnetic order of the nanoparticles being stable with time. However, with decreasing particle size the magnetic anisotropy energy per particle responsible for holding the magnetic moment along certain directions becomes comparable to the thermal energy. When this happens, the thermal fluctuations induce random flipping of the magnetic moment with time, and the nanoparticles lose their stable magnetic order and become superparamagnetic. Thus, the demand for further miniaturization comes into conflict with the superparamagnetism caused by the reduction of the anisotropy energy per particle: this constitutes the so-called 'superparamagnetic limit' in recording media. Here we show that magnetic exchange coupling induced at the interface between ferromagnetic and antiferromagnetic systems can provide an extra source of anisotropy, leading to magnetization stability. We demonstrate this principle for ferromagnetic cobalt nanoparticles of about 4 nm in diameter that are embedded in either a paramagnetic or an antiferromagnetic matrix. Whereas the cobalt cores lose their magnetic moment at 10 K in the first system, they remain ferromagnetic up to about 290 K in the second. This behaviour is ascribed to the specific way ferromagnetic nanoparticles couple to an antiferromagnetic matrix.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa