RESUMO
Decomposition of litter and organic matter is a very important soil ecosystem function where soil fauna play an important role. Knowledge of the responses in decomposition and soil fauna to different stressors is therefore crucial. However, the extent to which radioactivity may affect soil fauna is not so well known. There are some results showing effects on soil fauna at uranium mines and near Chernobyl from relatively high levels of anthropogenic radionuclides. We hypothesize that naturally occurring radionuclides affect soil fauna and thus litter decomposition, which will covary with radionuclide levels when accounting for important soil parameters. We have therefore used standardised litterbags with two different mesh sizes filled with birch leaves (Betula pubescens) to assess litter decomposition in an area with enhanced levels of naturally occurring radionuclides in the thorium (232Th) and uranium (238U) decay chains while controlling for variation in important soil parameters like pH, organic matter content, moisture and large grain size. We show that decomposition rate is higher in litterbags with large mesh size compared to litterbags with a fine mesh size that excludes soil fauna. We also find that litter dried at room temperature is decomposed at a faster rate than litter dried in oven (60°C). This was surprising given the associated denaturation of proteins and anticipated increased nutritional level but may be explained by the increased stiffness of oven-dried litter. This result is important since different studies often use either oven-dried or room temperature-dried litter. Taking the above into account, we explore statistical models to show large and expected effects of soil parameters but also significant effects on litter decomposition of the naturally occurring radionuclide levels. We use the ERICA tool to estimate total dose rate per coarse litterbag for four different model organisms, and in subsequent different statistical models we identify that the model including the dose rates of a small tube-shape is the best statistical model. In another statistical model including soil parameters and radionuclide distributions, 226Ra (or uranium precursory radionuclides) explain variation in litter decomposition while 228Ra (and precursors) do not. This may hint to chemical toxicity effects of uranium. However, when combining this model with the best model, the resulting simplified model is equal to the tube-shape dose-rate model. There is thus a need for more research on how naturally occurring radionuclides affect soil fauna, but the study at hand show the importance of an ecosystem approach and the ecosystem parameter soil decomposition.
Assuntos
Radiação de Fundo , Oligoquetos/efeitos da radiação , Radioisótopos/análise , Solo/química , Resíduos , Animais , BiodiversidadeRESUMO
Multispecies experiments like microcosms and mesocosms are widely used in many fields of research but not in radioecology. In radioecology, size limitations are important as large experimental volumes involve problems with waste (radionuclides), or shielding, absorption and available space in gamma fields (often within a climate chamber). We have therefore performed a literature review (ISI Web of Science, nâ¯=â¯406) of the design and properties of multispecies effect studies <100â¯L in size and with three or more mentioned taxa in other research fields to assess their suitability to radioecology. Studies with more mentioned taxa assess structural ecosystem parameters more often than studies with fewer mentioned taxa, while the opposite trend is seen for indirect effects/interactions. Studies of indirect effects benefit from more replicates and longer experiments. Almost all studies assess some ecosystem level parameter but only a quarter take a holistic approach assessing both structural and functional as well as indirect effects. We find that most cosms are custom-made systems, rather than standardised designs. Unmanipulated cosms consist of excised portions of the natural environment with a higher number of mentioned taxa, high ecological complexity and high realism, but have a relatively low replicability. In contrast, standardised cosms with fewer mentioned taxa have less ecological complexity but much higher replicability. This literature review shows that smaller cosm sizes have similar ecological complexity (e.g. number of taxa and trophic levels) and experimental duration as larger sized cosms, allowing for ecologically-relevant investigations, despite their small size. We encourage multispecies radioecology studies, preferably with environmental relevant doses and sufficient detail on dosimetry.
RESUMO
This work deals with analysis and modelling of the radionuclides 210Pb and210Po in the food-chain lichen-reindeer-man in addition to 210Po and 137Cs in top predators. By using the methods of Partial Least Square Regression (PLSR) the atmospheric deposition of 210Pb and 210Po is predicted at the sample locations. Dynamic modelling of the activity concentration with differential equations is fitted to the sample data. Reindeer lichen consumption, gastrointestinal absorption, organ distribution and elimination is derived from information in the literature. Dynamic modelling of transfer of 210Pb and 210Po to reindeer meat, liver and bone from lichen consumption, fitted well with data from Sweden and Finland from 1966 to 1971. The activity concentration of 210Pb in the skeleton in man is modelled by using the results of studying the kinetics of lead in skeleton and blood in lead-workers after end of occupational exposure. The result of modelling 210Pb and 210Po activity in skeleton matched well with concentrations of 210Pb and 210Po in teeth from reindeer-breeders and autopsy bone samples in Finland. The results of 210Po and 137Cs in different tissues of wolf, wolverine and lynx previously published, are analysed with multivariate data processing methods such as Principal Component Analysis PCA, and modelled with the method of Projection to Latent Structures, PLS, or Partial Least Square Regression PLSR.
Assuntos
Cadeia Alimentar , Modelos Químicos , Monitoramento de Radiação/métodos , Poluentes Radioativos/análise , Animais , Radioisótopos de Césio , Finlândia , Humanos , Líquens/química , Lynx , Mustelidae , Polônio/análise , Rena , Suécia , LobosRESUMO
Wolves, lynx and wolverines are on the top of the food-chain in northern Scandinavia and Finland. (210)Po and (137)Cs have been analysed in samples of liver, kidney and muscle from 28 wolves from Sweden. In addition blood samples were taken from 27 wolves. In 9 of the wolves, samples of muscle, liver and blood were analysed for (210)Po. Samples of liver and muscle were collected from 16 lynx and 16 wolverines from Norway. The liver samples were analysed for (210)Po and (137)Cs. Only (137)Cs analyses were carried out for the muscle samples. The wolves were collected during the winter 2010 and 2011, while the samples for lynx and wolverines were all from 2011. The activity concentrations of (210)Po in wolves were higher for liver (range 20-523 Bq kg(-1) d.w.) and kidney (range 24-942 Bq kg(-1) d.w.) than muscle (range 1-43 Bq kg(-1) d.w.) and blood (range 2-54 Bq kg(-1) d.w.). Activity ratios, (210)Po/(210)Pb, in wolf samples of muscle, liver and blood were in the ranges 2-77, 9-56 and 2-54. Using a wet weight ratio of 3.8 the maximal absorbed dose from (210)Po to wolf liver was estimated to 3500 µGy per year. Compared to wolf, the ranges of (210)Po in liver samples were lower in lynx (range 22-211 Bq kg(-1) d.w.) and wolverine (range16-160 Bq kg(-1) d.w.). Concentration of (137)Cs in wolf samples of muscle, liver, kidney and blood were in the ranges 70-8410 Bq kg(-1) d.w., 36-4050 Bq kg(-1) d.w., 31-3453 Bq kg(-1) d.w. and 4-959 Bq kg(-1) d.w., respectively. (137)Cs in lynx muscle and liver samples were in the ranges 44-13393 Bq kg(-1) d.w. and 125-10260 Bq kg(-1) d.w. The corresponding values for (137)Cs in wolverine were 22-3405 Bq kg(-1) d.w. for liver and 53-4780 Bq kg(-1) d.w. for muscle. The maximal absorbed dose from (137)Cs to lynx was estimated to 3000 µGy per year.
Assuntos
Césio/metabolismo , Exposição Ambiental , Lynx , Mustelidae , Polônio/metabolismo , Monitoramento de Radiação , Lobos , Animais , Césio/sangue , Radioisótopos de Césio/sangue , Radioisótopos de Césio/metabolismo , Finlândia , Lynx/metabolismo , Mustelidae/metabolismo , Noruega , Polônio/sangue , Poluentes Radioativos/sangue , Poluentes Radioativos/metabolismo , Suécia , Lobos/metabolismoRESUMO
In order to follow the turnover of (137)Cs in natural soils and estimate future trends in exposure of livestock, samples of natural surface soils were collected at 0-3 cm depth at 464 sites in 1995 and 463 sites in 2005 covering the country. In both cases the geographical pattern observed was similar to the original distribution from 1986, but the decline of (137)Cs activity in the surface soil was not the same everywhere. In 1995 the (137)Cs reduction since 1986 was found to be considerably greater in coastal areas than farther inland. The main reason for this appears to be the much greater deposition of marine cations such as Mg(2+) and Na(+) in the coastal areas, replacing Cs ions fixed on soil particle surfaces. This cation exchange appeared to be particularly strong near the southern coast where deposition of NH4(+) from transboundary air pollution is evident in addition to the marine cations. During 1995-2005 the (137)Cs decline in the surface soil was more uniform over the country than in the preceding 10-year period but still significantly higher in coastal areas than inland. Differences in precipitation chemistry may have influenced the uptake of (137)Cs in terrestrial food chains.